Sirds un asinsrites slimību mirstības riska prognoze nākamajam gadam no anonimizētiem Latvijas veselības aprūpes sistēmas datiem: XGBoost mašīnmācīšanās algoritma iespējamības pārbaude
DOI:
https://doi.org/10.22364/adz.59.09Keywords:
mašīnmācīšanās, mirstības riska prognoze, XGBoost, sabiedrības veselības dati, Latvija, sirds un asinsvadu slimību mirstības risksAbstract
Veselības politikas plānotājiem XGBoost algoritms varētu noderēt slimnīcu un citu veselības aprūpes iestāžu kapacitātes plānošanā un slodzes līdzsvarošanā.
References
Chen, T.; Guestrin, C. (2016) XGBoost: A Scalable Tree Boosting System. KDD’16: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, August, 785–794. https://doi.org/10.1145/2939672.2939785.
C-Statistic: Definition, Examples, Weighting and Significance (bez datuma). Pieejams: https://www.statisticshowto.com/c-statistic/ (03.10.2023.).
Hageman, S.; Pennells, L.; Ojeda, F.; Kaptoge, S.; Kuulasmaa, K.; de Vries, T.; Xu, Z.; Kee, F.; Chung, R.; Wood, A.; McEvoy, J. W.; Veronesi, G.; Bolton, T.; Dendale, P.; Ference, B. A.; Halle, M.; Timmis, A.; Vardas, P.; Danesh, J.; Graham, I. ... Zhou, B. (2021). SCORE2 risk prediction algorithms: new models to estimate 10-year risk of cardiovascular disease in Europe. European Heart Journal, 42 (25), 2439−2454. https://doi.org/10.1093/eurheartj/ehab309.
OECD / European Observatory on Health Systems and Policies (2019) Latvija: Valsts veselības profils 2019, State of Health in the EU. Paris : OECD Publishing; Brussels : European Observatory on Health Systems and Policies. Pieejams: https://health.ec.europa.eu/system/files/2019-11/2019_chp_lv_latvian_0.pdf (29.09.2023.).
Rossello, X.; Dorresteijn, J. A. N.; Janssen, A.; Lambrinou, E.; Scherrenberg, M.; Bonnefoy-Cudraz, E.; Cobain, M.; Piepoli, M., F.; Visseren, F. L. J.; Dendale P. (2019) Risk prediction tools in cardiovascular disease prevention: A report from the ESC Prevention of CVD Programme led by the European Association of Preventive Cardiology (EAPC) in collaboration with the Acute Cardiovascular Care Association (ACCA) and the Association of Cardiovascular Nursing and Allied Professions (ACNAP). European Journal of Cardiovascular Nursin, 18 (7), 534–544. https://doi.org/10.1177/1474515119856207.
Wiemken, T. L.; Kelley, R. R. (2020) Machine Learning in Epidemiology and Health Outcomes Research. Annual Review of Public Health, 41 (1), 21–36. Pieejams: https://www.annualreviews.org/doi/10.1146/annurev-publhealth-040119-094437.