Bigdata-based university reputation measurement. Towards conceptualizing AI-based university reputation score (URS)

Authors

  • Kalle Nuortimo Oulu University of Applied Sciences, Finland, International School for Social and Business Studies, Celje, Slovenia Author

DOI:

https://doi.org/10.37380/jisib.v13i3.1112

Keywords:

automated university reputation measurement, opinion mining, generative AI

Abstract

The competition inside higher education institutions, namely universities, is tightening, putting emphasize on competitive intelligence (CI) function. At the same time, communication has shifted to digital channels, this trend was largely influenced by Corona virus pandemic. This presents a challenge for university reputation measurement and ranking, while the electronic word to mouth (E-wom) is more challenging to measure, control or influence than the issues measured in traditional university rankings. While traditional metrics are based on measuring academic reputation via surveys and gathering data from research organisations, this paper presents a way to include AI, namely chatGPT and big-data based media-analytics with social media sentiment to aid analysing the reputation of a University. Results based on Finnish universities indicate, that differences between media visibility and sentiment exist, and can be to some extent utilized in rating universities in local level and also generalize to global level, finally targeting to URS (University reputation score) -index. Due to complexity of measuring the reputation of the university strictly via AI and automated opinion mining, several limitations exist. The context of Finnish universities were chosen in order to limit the scope of the analysis.

References

Ashforth, B. E., & Mael, F. (1989). Social identity theory and the organization. Academy of management review, 14(1), 20-39. DOI: https://doi.org/10.2307/258189

Astarkie, M. G., Bala, B., Bharat Kumar, G. J., Gangone, S., & Nagesh, Y. (2023, January). A Novel Approach for Sentiment Analysis and Opinion Mining on Social Media Tweets. In Proceedings of the International Conference on Cognitive and Intelligent Computing: ICCIC 2021, Volume 2 (pp. 143-151). Singapore: Springer Nature Singapore. DOI: https://doi.org/10.1007/978-981-19-2358-6_15

Bamberger, A., Bronshtein, Y., & Yemini, M. (2020). Marketing universities and targeting international students: a comparative analysis of social media data trails. Teaching in higher education, 25(4), 476-492. DOI: https://doi.org/10.1080/13562517.2020.1712353

Barnett , M . , Jermier , J . and Lafferty , B . ( 2006 ) Corporate reputation: The definitional landscape, Corporate Reputation Review , 9 (1) , 26 – 38 . DOI: https://doi.org/10.1057/palgrave.crr.1550012

Borji, A. (2023). A categorical archive of ChatGPT failures. arXiv preprint arXiv:2302.03494. DOI: https://doi.org/10.21203/rs.3.rs-2895792/v1

Bouschery, S.G., Blazevic, V., & Piller, F.T. (2023). Augmenting human innovation teams with artificial intelligence: Exploring transformer-based language models. Journal of product innovation management, 40(2), 139-153. DOI: https://doi.org/10.1111/jpim.12656

Bromley , D . ( 2002 ) ‘ Comparing corporate reputations: League tables, quotients, benchmarks or case studies ’ , Corporate Reputation Review , 5 (1) , 33 – 50 . DOI: https://doi.org/10.1057/palgrave.crr.1540163

Cascella, M., Montomoli, J., Bellini, V., & Bignami, E. (2023). Evaluating the Feasibility of ChatGPT in Healthcare: An Analysis of Multiple Clinical and Research Scenarios. Journal of Medical Systems, 47, 33. DOI: https://doi.org/10.1007/s10916-023-01925-4

Cearley, D., Burke, B., Searle, S., & Walker, M. J. (2016). Top 10 strategic technology trends for 2018. The Top, 10, 1-246.

ChatGPT limitations. https://amberstudent.com/blog/post/chatgpt-limitations-that-you-need-to-know. Accessed 27.8.2023

Dake, D. K., & Gyimah, E. (2023). Using sentiment analysis to evaluate qualitative students’ responses. Education and Information Technologies, 28(4), 4629-4647. DOI: https://doi.org/10.1007/s10639-022-11349-1

Durieux, V., & Gevenois, P. A. (2010). Bibliometric indicators: quality measurements of scientific publication. Radiology, 255(2), 342-351. DOI: https://doi.org/10.1148/radiol.09090626

Escandon-Barbosa, D., Salas-Paramo, J., & Moreno-Gómez, J. (2023). Academic reputation quality and research: an analysis of Latin-American universities in the world higher education institution rankings from the perspective of organizational learning theory. Journal of Further and Higher Education, 1-15. DOI: https://doi.org/10.1080/0309877X.2023.2176204

Farinloye, T., Wayne, T., Mogaji, E., & Watat, J. K. (2020). Social media for universities’ strategic communication. In Strategic marketing of higher education in Africa (pp. 96-115). Routledge. DOI: https://doi.org/10.4324/9780429320934-8

Fitzgerald, H. E., Karen, B., Sonka, S. T., Furco, A., & Swanson, L. (2020). The centrality of engagement in higher education. In Building the Field of Higher Education Engagement (pp. 201-219). Routledge. DOI: https://doi.org/10.4324/9781003443353-12

Foroudi, P., Yu, Q., Gupta, S., & Foroudi, M. M. (2019). Enhancing university brand image and reputation through customer value co-creation behaviour. Technological Forecasting and Social Change, 138, 218-227. DOI: https://doi.org/10.1016/j.techfore.2018.09.006

Floreddu, P. B., Cabiddu, F., & Evaristo, R. (2014). Inside your social media ring: How to optimize online corporate reputation. Business Horizons, 57(6), 737-745. DOI: https://doi.org/10.1016/j.bushor.2014.07.007

Freeman, R. E., Harrison, J. S., Wicks, A. C., Parmar, B. L., & De Colle, S. (2010). Stakeholder theory: The state of the art. DOI: https://doi.org/10.1017/CBO9780511815768

Garcia-Alsina, M., Cobarsi-Morales, J., & Ortoll, E. (2016). Competitive intelligence theoretical framework and practices: The case of Spanish universities. Aslib Journal of Information Management, 68(1), 57-75. DOI: https://doi.org/10.1108/AJIM-04-2015-0061

Giroux, H. (2002). Neoliberalism, corporate culture, and the promise of higher education: The university as a democratic public sphere. Harvard educational review, 72(4), 425-464. DOI: https://doi.org/10.17763/haer.72.4.0515nr62324n71p1

Gupta, S., Urvashi, & Singh, A. (2023). A Vocabulary-Based Framework for Sentiment Analysis. In Computational Intelligence: Select Proceedings of InCITe 2022 (pp. 507-515). Singapore: Springer Nature Singapore. DOI: https://doi.org/10.1007/978-981-19-7346-8_43

Haleem, A., Javaid, M., & Singh, R.P. (2022). An era of ChatGPT as a significant futuristic support tool: A study on features, abilities, and challenges. BenchCouncil Transactions on Benchmarks, Standards and Evaluations, 2(4), 100089. DOI: https://doi.org/10.1016/j.tbench.2023.100089

Haque, M.U., Dharmadasa, I., Sworna, Z.T., Rajapakse, R.N., & Ahmad, H. (2022). I think this is the most disruptive technology": Exploring Sentiments of ChatGPT Early Adopters using Twitter Data. arXiv preprint arXiv:2212.05856.

He, W., Zha, S., & Li, L. (2013). Social media competitive analysis and text mining: A case study in the pizza industry. International journal of information management, 33(3), 464-472. DOI: https://doi.org/10.1016/j.ijinfomgt.2013.01.001

Holtzhausen, D., & Zerfass, A. (2014). Strategic Communication: Opportunities and Challenges of the Research Area 1. The Routledge handbook of strategic communication, 3-17. DOI: https://doi.org/10.4324/9780203094440

Jones, B., Temperley, J., & Lima, A. (2009). Corporate reputation in the era of Web 2.0: the case of Primark. Journal of marketing management, 25(9-10), 927-939. DOI: https://doi.org/10.1362/026725709X479309

Kocoń, J., Cichecki, I., Kaszyca, O., Kochanek, M., Szydło, D., Baran, J., Bielaniewicz, J., Gruza, M., Janz, A., Kanclerz, K., & Kocoń, A., (2023). ChatGPT: Jack of all trades, master of none. arXiv preprint arXiv:2302.10724. DOI: https://doi.org/10.2139/ssrn.4372889

Lafuente-Ruiz-de-Sabando, A., Zorrilla, P., & Forcada, J. (2018). A review of higher education image and reputation literature: Knowledge gaps and a research agenda. European research on management and business economics, 24(1), 8-16. DOI: https://doi.org/10.1016/j.iedeen.2017.06.005

Liu, B. (2022). Sentiment analysis and opinion mining. Springer Nature.

Mbrain(2015). https://www.m-brain.com/. Information received 2015.

Mandelli, A., & Cantoni, L. (2010). Social media impact on corporate reputation: Proposing a new methodological approach. Cuadernos de información, (27), 60-74. DOI: https://doi.org/10.7764/cdi.27.23

Mussard, M., & James, A. P. (2018). Engineering the global university rankings: gold standards, limitations and implications. IEEE Access, 6, 6765-6776. DOI: https://doi.org/10.1109/ACCESS.2017.2789326

Marshall, S. J., & Marshall, S. J. (2018). Internal and external stakeholders in higher education. Shaping the University of the Future: Using technology to catalyse change in university learning and teaching, 77-102. DOI: https://doi.org/10.1007/978-981-10-7620-6_4

Nuortimo, K., & Harkonen, J. (2019). Establishing an automated brand index based on opinion mining: analysis of printed and social media. Journal of Marketing Analytics, 7, 141-151. DOI: https://doi.org/10.1057/s41270-019-00060-9

Nuortimo, K. (2021). Hybrid approach in digital humanities research: a global comparative opinion mining media study (Doctoral dissertation, University of Oulu).

Ojala, P. 2018. ONKO SEN PAKKO OLLA MERSU?.Dissertaion, University of Turku, Marketing.

Olsson, E. K. (2014). Crisis communication in public organisations: Dimensions of crisis communication revisited. Journal of Contingencies and Crisis management, 22(2), 113-125. DOI: https://doi.org/10.1111/1468-5973.12047

OpenAI (2023). ChatGPT. https://chat.openai.com/chat. Accessed May 2023.

Panda, S., Pandey, S. C., Bennett, A., & Tian, X. (2019). University brand image as competitive advantage: a two-country study. International Journal of Educational Management. DOI: https://doi.org/10.1108/IJEM-12-2017-0374

Pham, H. T. (2018). Impacts of higher education quality accreditation: a case study in Vietnam. Quality in Higher Education, 24(2), 168-185. DOI: https://doi.org/10.1080/13538322.2018.1491787

Phillips, R. A. (Ed.). (2011). Stakeholder theory. Edward Elgar Publishing. DOI: https://doi.org/10.4337/9780857936349

Rani, A., & Shivaprasad, H. N. (2021). Revisiting the antecedent of electronic word-of-mouth (eWOM) during COVID-19 Pandemic. Decision, 48(4), 419-432. DOI: https://doi.org/10.1007/s40622-021-00298-2

Rust, R. T., Rand, W., Huang, M. H., Stephen, A. T., Brooks, G., & Chabuk, T. (2021). Real-time brand reputation tracking using social media. Journal of Marketing, 85(4), 21-43. DOI: https://doi.org/10.1177/0022242921995173

Scott, G., & Wilson, D. (2002). Tracking and profiling successful IT graduates: An exploratory study.

Shehzadi, S., Nisar, Q. A., Hussain, M. S., Basheer, M. F., Hameed, W. U., & Chaudhry, N. I. (2020). The role of digital learning toward students' satisfaction and university brand image at educational institutes of Pakistan: a post-effect of COVID-19. Asian Education and Development Studies. DOI: https://doi.org/10.1108/AEDS-04-2020-0063

Sultan, P., & Wong, H. Y. (2019). How service quality affects university brand performance, university brand image and behavioural intention: The mediating effects of satisfaction and trust and moderating roles of gender and study mode. Journal of Brand Management, 26(3), 332-347. DOI: https://doi.org/10.1057/s41262-018-0131-3

T-Media, www.t-media.fi. Retrieved 27.8.2023

Thorp, H.H. (2023). ChatGPT is fun, but not an author. Science, 379(6630), 313-313. DOI: https://doi.org/10.1126/science.adg7879

Toklucu, E., Silman, F., Turan, S., Atasoy, R., & Kalkan, Ü. (2022). The effects of the crisis management skills and distance education practices of universities on student satisfaction and organizational image. Sustainability, 14(10), 5813. DOI: https://doi.org/10.3390/su14105813

Qin, C., Zhang, A., Zhang, Z., Chen, J., Yasunaga, M. & Yang, D. (2023). Is ChatGPT a general-purpose natural language processing task solver? arXiv preprint arXiv:2302.06476. DOI: https://doi.org/10.18653/v1/2023.emnlp-main.85

QS-index methodology(2021): https://www.topuniversities.com/qs-world-university-rankings/methodology. Retrieved xx.2021

QS rankings 2020. https://www.topuniversities.com/university-rankings-articles/world-university-rankings/out-now-qs-world-university-rankings-2020. Retrieved 27.7.2021

Yliopistolaki. https://www.finlex.fi/fi/laki/ajantasa/2009/20090558. Retrieved 27.7.2021.

van Dis, E.A.M., Bollen, J., Zuidema, W., van Rooij, R., & Bockting C. (2023). ChatGPT: five priorities for research. Nature, 614, 224-226. DOI: https://doi.org/10.1038/d41586-023-00288-7

Vidaver-Cohen, D. (2007). Reputation beyond the rankings: A conceptual framework for business school research. Corporate reputation review, 10, 278-304. DOI: https://doi.org/10.1057/palgrave.crr.1550055

Volkwein, J. F. (2010). Assessing alumni outcomes. New Directions for Institutional Research, 2010(S1), 125-139. DOI: https://doi.org/10.1002/ir.335

Downloads

Published

2024-03-22

How to Cite

Nuortimo, K. (2024). Bigdata-based university reputation measurement. Towards conceptualizing AI-based university reputation score (URS). Journal of Intelligence Studies in Business, 13(3), 6-23. https://doi.org/10.37380/jisib.v13i3.1112