Competitive and technology intelligence to reveal the most influential authors and inter-institutional collaborations on additive manufacturing for hand orthoses
DOI:
https://doi.org/10.37380/jisib.v8i3.364Keywords:
3D printing, additive manufacturing, betweenness centrality, bibliographic coupling, competitive intelligence, hand orthoses, network map analysis, scientometricsAbstract
Additive manufacturing (AM) is revolutionizing the health industry, where it provides innovative solutions for the production of personalized devices, such as hand orthoses. However, the scientific research dynamics in this topic have not yet been investigated. This study aims to fill this gap through the application of a competitive and technology intelligence (CTI) methodology enhanced by a scientometric and network map analysis. Major advances in the fabrication of hand orthoses using AM, the presence of collaborations, and the most influential authors were determined. Specifically, network map analysis, bibliographic occurrence and bibliographic coupling were conducted on documents retrieved from Scopus and the Web of Science (WoS), and on patents from more than 104 authorities. Results showed only nine published patent families and 34 research articles on this topic from 2006 to 2016. Ten papers concern static orthoses, while 24 deal with dynamic orthoses and exoskeletons. The indegree and outdegree parameters and the betweenness centrality of these documents enabled us to determine the most cited authors and instances of collaboration (papers co-authored between institutions). Dr. Paterson A. M. J. was the most influential author, with four publications with the highest betweenness centrality in the network (189), which accounted for the most cited document with five citations. The institution with the most publications was Loughborough University, with four papers, and the collaboration between affiliations was rare. These documents review important aspects of manufacturing orthoses using AM, and additionally pay particular attention to the importance of personalised orthoses where AM contributes. Notably, these papers focused primarily on studies for the development of a methodology for the fabrication of hand orthoses using AM, but they do not present any application. This research provides insights to better understand the dynamics of research and development in the orthopaedics domain, specifically for hand orthoses.
References
Archibugi, D. and Pianta, M. (1996). Measuring Technological Change through Patents and Innovation Surveys. Technovation, 16(9), 451-468. http://doi.org/10.1016/0166-
(96)00031-4
Bakhtin, P. and Saritas, O. (2016). Tech Mining for Emerging STI Trends Through Dynamic Term Clustering and Semantic Analysis: The Case of Photonics. In Daim, T., Chiavetta, D., Porter, A. and Saritas, O. (eds). Anticipating Future Innovation Pathways Through Large Data Analysis. New York: Springer, 341-360. http://doi.org/10.1007/978-3-319-39056-7_18
Banks, J. (2013). Adding Value in Additive Manufacturing. IEEE Pulse, 4(6), 22–26. http://doi.org/10.1109/mpul.2013.2279617
Baronio, G., Harran, S. and Signoroni, A. (2016). A Critical Analysis of a Hand Orthosis Reverse Engineering and 3D Printing Process. Applied Bionics and Biomechanics, 2016(July).
Basiliere, P., and Shanler, M. (2015). Hype Cycle for 3D Printing, 2015(July) , 1-26.
Bastian, M., Heymann, S. and Jacomy, M. (2009). Gephi: An Open Source Software for Exploring and Manipulating Networks. Third International AAAI Conference on Weblogs and Social Media, 361-362. http://doi.org/10.1136/qshc.2004.010033
Bataller, A., Cabrera, J. A., Clavijo, M. and Castillo, J. J. (2016). Evolutionary synthesis of mechanisms applied to the design of an exoskeleton for finger rehabilitation. Mechanism and Machine Theory, 105, 31-433. http://doi.org/10.1016/j.mechmachtheory.2016.06.022
Bianchi, M., and Buonamici, F. (2016). Design and Optimization of a Flexion/Extension Mechanism for a Hand Exoskeleton System. In Asme 2016. North Carolina. http://doi.org/10.1115/DETC2016-59466
Biscaro, C., and Giupponi, C. (2014). Co-authorship and bibliographic coupling network effects on citations. PLoS ONE, 9(6). http://doi.org/10.1371/journal.pone.0099502
Bonino, D., Ciaramella, A. and Corno, F. (2010). Review of the state-of-the-art in patent information and forthcoming evolutions in intelligent patent informatics. World Patent Information, 32(1), 30-38. http://doi.org/10.1016/j.wpi.2009.05.008
Bornmann, L. and Leydesdorff, L. (2014). Scientometrics in a changing research Landscape. EMBO Reports, 15(12), 1-6.
Bouzit, M., Burdea, G., Popescu, G. and Boian, R. (2002). The Rutgers Master II - New design force-feedback glove. IEEE/ASME Transactions on Mechatronics, 7(2), 256-263. http://doi.org/10.1109/TMECH.2002.1011262
Brandes, U. (2001). A faster algorithm for betweenness centrality*. The Journal of Mathematical Sociology, 25(2), 163-177. doi: 10.1080/0022250X.2001.9990249
Cassell, E., Ashby, K., Gunatilaka, A. and Clapperton, A. (2005). Do wrist guards have the potential to protect against wrist injuries in bicycling, micro scooter riding, and monkey bar play? INJURY PREVENTION, 11(4), 200-203.
Cincotti, C. C., O’Donnell, S., Zapata, G. E., Rabolli, C. M. and BuSha, B. F. (2015). Strength amplifying hand exoskeleton. 2015 41st Annual Northeast Biomedical Engineering Conference, NEBEC 2015. http://doi.org/10.1109/NEBEC.2015.7117082
Colditz, J. (1996). Principles of splinting and splint prescription. In Peimer, C. A. (ed). Surgery of the Hand and Upper Extremity. New York: McGraw-Hill, 2389-2410.
Colditz, J. C. (2002). Plaster of Paris: The forgotten hand splinting material. Journal of Hand Therapy, 15(2), 144-157.
http://doi.org/http://dx.doi.org/10.1053/hanthe.2002.v15.015014
Cook, D., Gervasi, V., Rizza, R., Kamara, S. and Liu, X.C. (2010). Additive fabrication of custom pedorthoses for clubfoot correction. Rapid Prototyping Journal, 16(3), 189-193. http://doi.org/10.1108/13552541011034852
Coppard, B. M., and Lohman, H. (2015). Introduction to orthotics : a clinical reasoning & problem-solving approach. Maryland Heights, MO: Mosby.
Da Fonsêca, G. F. G., Lopes, J. A. L., da Silva, J. R. C., de Almeida, L. C., and de Andrade, M. M. (2016). BR 102014029649 A2: Manufacturing process articulated prostheses from a combination of rigid and flexible material in one piece. Brazil.
Davey, S. M., Brennan, M., Meenan, B. J. and McAdam, R. (2011). Innovation in the medical device sector: an open business model approach for high-tech small firms. Technology Analysis & Strategic Management, 23(8), 807-824. http://doi.org/10.1080/09537325.2011.604152
Deniz, K. (2016). WO 2016071773 A2: Methods for Integrating Sensors and Effectors in Custom Three-Dimensional Orthosis. Turkey. Deshpande, A. (2015). WO 2015095459 A1: Robotic finger exoskeleton. US.
Dormehl, L. (2018). 14 major milestones along the brief history of 3D printing. Elmira, NY: WENY News
Elsevier, B.V. (2016). Scopus: Content Coverage Guide. Retrieved from https://www.elsevier.com/ data/assets/pdf_file/0007/69451/scopus_content_coverage_guide.pdf
Espalin, D., Arcaute, K., Rodriguez, D., Medina, F., Posner, M. and Wicker, R. (2010). Fused deposition modeling of patient-specific polymethylmethacrylate implants. Rapid Prototyping Journal, 16(3), 164-173.
http://doi.org/10.1108/13552541011034825 Fabry, B., Ernst, H., Langholz, J. and Köster, M. (2006). Patent portfolio analysis as a useful tool for identifying R&D and business opportunities–an empirical application in the nutrition and health industry. World Patent Information, 28(3), 215-225. http://doi.org/10.1016/j.wpi.2005.10.004
Faustini, M. C., Neptune, R. R., Crawford, R. H. and Stanhope, S. J. (2008). Manufacture of passive dynamic ankle-foot orthoses using selective laser sintering. IEEE Transactions on Biomedical Engineering, 55(2), 784-790. http://doi.org/10.1109/TBME.2007.912638
Fess, E. E. (2002). A History of splinting: To understand the present, view the past. Journal of Hand Therapy, 15(2), 97-132. http://doi.org/10.1053/hanthe.2002.v15.0150091
Fess, E. E., & Fess, E. E. (2005). Hand and upper extremity splinting : principles & methods. Maryland Heights, MO: Mosby.
Fess, E., and McCollum, M. (1998). The influence of splinting on healing tissues. Journal of Hand Therapy: Official Journal of the American Society of Hand Therapists, 11(2), 140-147. http://doi.org/10.1016/S0894-1130(98)80012-4
García-García, L. A. and Rodríguez-Salvador, M. (2018). Additive manufacturing knowledge incursion on orthopaedic devices: The case of hand orthoses. In The 3rd International Conference on Progress in Additive Manufacturing. 571-576).
Gmür, M. (2003). Co-citation analysis and the search for invisible colleges: A methodological evaluation. Scientometrics, 57(1), 27-57. http://doi.org/10.1023/A:1023619503005
Goodman, S. L., Kim, Kyujung andSchroeder, J. (2007). WO 2007045000 A2: Personal fit medical implants and orthopedic surgical instruments and methods for making. United States.
Hopkinson, N., Hague, R. and Dickens, P. (2005). Rapid Manufacturing: an industrial revolution for the digital age. Hoboken, NJ: John Wiley & Sons, Ltd. http://doi.org/10.1002/0470033991.fmatter
Imms, C., et al.. (2016). Minimising impairment: Protocol for a multicentre randomised controlled trial of upper limb orthoses for children with cerebral palsy. BMC Pediatrics, 16.
Iqbal, J., Tsagarakis, N. G. and Caldwell, D. G. (2010). A human hand compatible optimised exoskeleton system. 2010 IEEE International Conference on Robotics and Biomimetics, ROBIO 2010, 685-690.
http://doi.org/10.1109/ROBIO.2010.5723409 Iqbal, J., Tsagarakis, N. G., Fiorilla, A. E. and
Caldwell, D. G. (2010). A portable rehabilitation device for the hand. 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC’10, 3694-3697.
http://doi.org/10.1109/IEMBS.2010.5627448 Jacomy, M., Venturini, T., Heymann, S. and
Bastian, M. (2014). ForceAtlas2, a continuous graph layout algorithm for handy network visualization designed for the Gephi software. PLoS ONE, 9(6).
http://doi.org/10.1371/journal.pone.0098679 Schouwenburg, K. L., Bersak, D., Smith, J. and
Murphy, C. N.. (2016). US 20160101571 A1:
Systems and methods for generating orthotic device models by surface mapping and extrusion. US.
Kim, H. and Jeong, S. (2015). Case study: Hybrid model for the customized wrist orthosis using 3D printing. Journal of Mechanical Science and Technology, 29(12). http://doi.org/10.1007/s12206-015-1115-9
Kuusi, O. and Meyer, M. (2007). Anticipating technological breakthroughs: Using bibliographic coupling to explore the nanotubes paradigm. Scientometrics, 70(3), 759–777. http://doi.org/10.1007/s11192-007-0311-5
Leydesdorff, L., De Moya-Anegõn, F. and Guerrero-Bote, V. P. (2015). Journal maps, interactive overlays, and the measurement of interdisciplinarity on the basis of Scopus data (1996-2012). Journal of the Association for Information Science and Technology, 66(5), 1001-1016. http://doi.org/10.1002/asi.23243
Leydesdorff, L. and Milojević, S. (2015). Scientometrics. International Encyclopedia of the Social & Behavioral Sciences (Second Edition), 322–327. http://doi.org/http://dx.doi.org/10.1016/B978-0-08-097086-8.85030-8
Low, J.-H., Ang, M. H. and Yeow, C.-H. (2015). Customizable soft pneumatic finger actuators for hand orthotic and prosthetic applications. In IEEE International Conference on Rehabilitation Robotics (Vol. 2015-Sept). http://doi.org/10.1109/ICORR.2015.7281229
Madden, K. E. and Deshpande, A. D. (2015). On Integration of Additive Manufacturing During the Design and Development of a Rehabilitation Robot: A Case Study. Journal of Mechanical Design, 137(11), 111417. http://doi.org/10.1115/1.4031123
Matthew Chin, H. C., Hoon, L. J. and Yeow, R. C.
H. (2016). Design and evaluation of Rheumatoid Arthritis rehabilitative Device (RARD) for laterally bent fingers. In Proceedings of the IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics. 2016(July). http://doi.org/10.1109/BIOROB.2016.7523732
Mavroidis, C. et al. (2011). Patient specific ankle-foot orthoses using rapid prototyping. Journal of NeuroEngineering and Rehabilitation, 8(1), 1. http://doi.org/10.1186/1743-0003-8-1
McCain, K. W. (1990). Mapping Authors in Intellectual Space: A Technical Overview. Journal of the American Society for Information Science, 41(6), 433-443.
Mingers, J. and Leydesdorff, L. (2015). A Review of Theory and Practice in Scientometrics A Review of Theory and Practice in Scientometrics 1. European Journal of Operational Research, (1934), 1-47. http://doi.org/10.1016/j.ejor.2015.04.002
Oldham, P., Hall, S. and Burton, G. (2012). Synthetic biology: Mapping the Scientific landscape. PLoS ONE, 7(4). http://doi.org/10.1371/journal.pone.0034368
Omarkulov, N., Telegenov, K., Zeinullin, M., Tursynbek, I. and Shintemirov, A. (2016). Preliminary mechanical design of NU-Wrist: A 3-DOF self-Aligning Wrist rehabilitation robot. Proceedings of the IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics. 2016(July), 962-967. http://doi.org/10.1109/BIOROB.2016.7523753
Palousek, D., Rosicky, J., Koutny, D., Stoklásek, P. and Navrat, T. (2014). Pilot study of the wrist orthosis design process. Rapid Prototyping Journal, 20(1). http://doi.org/10.1108/RPJ-03-2012-0027
Paterson, A. M., Bibb, R., Campbell, R. I. and Bingham, G. (2015). Comparing additive manufacturing technologies for customised wrist splints. Rapid Prototyping Journal, 21(3). doi: 10.1108/RPJ-10-2013-0099
Paterson, A. M., Bibb, R. J. and Campbell, R. I. (2012). Evaluation of a digitised splinting approach with multiple-material functionality using additive manufacturing technologies. In D. Bourell (Ed.), Twenty-Third Annual International Solid Freeform Fabrication Symposium, 656-672.
Paterson, A. M., Donnison, E. Bibb, R. J. and Ian Campbell, R. (2014). Computer-aided design to support fabrication of wrist splints using 3D printing: A feasibility study. Hand Therapy, 19(4), 102-113. http://doi.org/10.1177/1758998314544802
Paterson, A. M. J., Bibb, R. J. and Campbell, R. I. (2010a). A review of existing anatomical data capture methods to support the mass customisation of wrist splints. Virtual and Physical Prototyping, 5(4), 201-207. http://doi.org/10.1080/17452759.2010.528183
Paterson, A. M. J., Bibb, R. J. and Campbell, R. I. (2010b). A review of existing anatomical data capture methods to support the mass customisation of wrist splints. Virtual and Physical Prototyping, 5(4). http://doi.org/10.1080/17452759.2010.528183
Polygerinos, P., Wang, Z., Galloway, K. C., Wood, R. J. and Walsh, C. J. (2014). Soft robotic glove for combined assistance and at-home rehabilitation. Robotics and Autonomous Systems, 73, 135-143. http://doi.org/10.1016/j.robot.2014.08.014
Porter, A. L. and Youtie, J. (2009). How interdisciplinary is nanotechnology? Journal of Nanoparticle Research, 11(5), 1023-1041. http://doi.org/10.1007/s11051-009-9607-0
Reimer, S. M. F., Lueth, T. C. and D’Angelo, L. T. (2014). Individualized arm shells towards an ergonomic design of exoskeleton robots. Conference Proceedings - IEEE International Conference on Systems, Man and Cybernetics, 2014–Janua(January), 3958-3965. http://doi.org/10.1109/SMC.2014.6974550
Ranky, R. and Mavroidis, C. (2014). JP 2014533975 A: Customizable embedded sensors. Japan.
Rodríguez-Salvador, M. and Tello-Bañuelos, M. (2012). Applying patent analysis with competitive technical intelligence: The case of plastics. Journal of Intelligence Studies in Business, 2(1), 51-58. Retrieved from http://www.scopus.com/inward/record.url?eid=2-s2.0-84905713951&partnerID=tZOtx3y1
Rodríguez-Salvador, M., Rio-Belver, R. M. and Garechana-Anacabe, G. (2017). Scientometric and patentometric analyses to determine the knowledge landscape in innovative technologies: The case of 3D bioprinting. PLoS ONE, 12(6). http://doi.org/10.1371/journal.pone.0180375
Rodríguez-Salvador, M., Cruz-Zamudio, P., Avila-Carrasco S.A., Olivares-Benítez, E. and Arellano-Bautista, B. (2014). Strategic Foresight: Determining Patent Trends in Additive Manufacturing. Journal of Intelligence, 4(3), 42-62. Retrieved from http://scholar.google.comhttps//ojs.hh.se/index.php/JISIB/article/view/104
Rotolo, D., Rafols, I., Hopkins, M. and Leydesdorff, L. (2015). Strategic Intelligence on Emerging Technologies: Scientometric Overlay Mapping. Journal of the Association for Information Science and Technology, (September), 1-38. http://doi.org/10.1002/asi.23631
Schiele, A. and Van Der Helm, F. C. T. (2006). Kinematic design to improve ergonomics in human machine interaction. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 14(4), 456-469. http://doi.org/10.1109/TNSRE.2006.881565
Schroeder, J. (2010). WO 2010120990 A1: Personal fit medical implants and orthopedic surgical instruments and methods for making. United States.
Schubert, C., Van Langeveld, M. C. and Donoso, L. A. (2014). Innovations in 3D printing: a 3D overview from optics to organs. The British Journal of Ophthalmology, 98(2), 159-61. http://doi.org/10.1136/bjophthalmol-2013-304446
Schultz-Johnson, K. (2002). Static progressive splinting. Journal of Hand Therapy : Official Journal of the American Society of Hand Therapists, 15(June), 163-178. http://doi.org/10.1053/hanthe.2002.v15.015016
Schwartz, D. A. and Janssen, R. G. (2005). Static progressive splint for composite flexion. Journal of Hand Therapy, 18(4), 447-449. http://doi.org/10.1197/j.jht.2005.07.005
Sinha, M. and Pandurangi, A. (2016). Guide to practical patent searching and how to use Patseer for patent search and analysis (Second ed.).
Small, H. (1973). Co-citation in the Scientific Literature : A New Measure of the Relationship Between Two Documents, 265- 269.
Tan G., Robson, N. and Soh, G. S. (2016). Dimensional synthesis of a passive eight-bar slider exo-limb for grasping tasks. In International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Volume 5B: 40th Mechanisms and Robotics Conference (p. 9). North Carolina.
Tang, T., Zhang, D., Xie, T. and Zhu, X. (2013). An exoskeleton system for hand rehabilitation driven by shape memory alloy. In 2013 IEEE International Conference on Robotics and Biomimetics, ROBIO 2013. http://doi.org/10.1109/ROBIO.2013.6739553
Thomson Reuters. (2011). Web of Science ®, 1–4. http://doi.org/10.1023/B
Velho, T. and Zavaglia, C. (2011). A Contribution to the Development of a Human-Machine Exoskeleton Device Using Rapid Prototyping Technology. In Proceedings of the 2011 IEEE international Conference on Robotics and Biomimetics.1789-1794.
Ventola, C. L. (2014). Medical Applications for 3D Printing: Current and Projected Uses. Pharmacy and Therapeutics, 39(10), 704-711.
Weiss, P., Heyer, L., Munte, T. F., Heldmann, M., Schweikard, A. and Maehle, E. (2013). Towards a parameterizable exoskeleton for training of hand function after stroke. IEEE International Conference on Rehabilitation Robotics. http://doi.org/10.1109/ICORR.2013.6650505
White, H. D. and Griffith, B. C. (1981). Author cocitation: A literature measure of intellectual structure. Journal of the American Society for Information Science, 32(3), 163-171. http://doi.org/10.1002/asi.4630320302
Winter, S. H. and Bouzit, M. (2006). Testing and Usability Evaluation of the MRAGES Force Feedback Glove. In Fifth International Workshop on Virtual Rehabilitation, IWVR 2006 (pp. 82-87). http://doi.org/10.1109/IWVR.2006.1707532
Worsnopp, T. T., Peshkin, M. A., Colgate, J. E. and Kamper, D. G. (2007). An actuated finger exoskeleton for hand rehabilitation following stroke. 2007 IEEE 10th International Conference on Rehabilitation Robotics, ICORR’07, 00(c), 896-901. http://doi.org/10.1109/ICORR.2007.4428530
Xiogjiao, X., Ning, Y. & Haolin, Z. (2014). CN 203935304 U: Novel bionic exoskeleton artificial limb controlled by cable wires. China.
Yap, H. K., Ng, H. Y. and Yeow, C.H. (2016). High-Force Soft Printable Pneumatics for Soft Robotic Applications. Soft Robotics, 3(3). http://doi.org/10.1089/soro.2016.0030
Zachariasen, J. T. and Cropper, D. E. (2015). US 2015328840 A1: Use of additive manufacturing processes in the manufacture of custom wearable and/or implantable medical devices. US.
Zhao, D. and Strotmann, A. (2008). Evolution of research activities and intellectual influences in information science 1996-2005: Introducing author bibliographic-coupling analysis. Journal of the American Society for Information Science and Technology, 59(13), 2070-2086. http://doi.org/10.1002/asi.20910
Downloads
Published
Issue
Section
License
Copyright (c) 2019 Journal of Intelligence Studies in Business
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).