Bioinformatic insights into the xenobiotic degradation potential gene clusters of fish-associated novel Bacillus velezensis SNR14-4

Authors

  • Sethu Madhavan Department of Marine Bioscience, Faculty of Ocean Science and Technology, Kerala University of Fisheries and Ocean Studies
  • Niveditha Dinesh Department of Marine Bioscience, Faculty of Ocean Science and Technology, Kerala University of Fisheries and Ocean Studies
  • Rashid N.R. Muhammed Department of Marine Bioscience, Faculty of Ocean Science and Technology, Kerala University of Fisheries and Ocean Studies
  • Deepa John Centre for Bioactive Substances from Marine Organisms, Kerala University of Fisheries and Ocean Studies
  • Sini Hariharan Department of Biochemistry, Government College, Kariavattom, Thiruvananthapuram
  • Kottayath G. Nevin Department of Marine Bioscience, Faculty of Ocean Science and Technology; Centre for Bioactive Substances from Marine Organisms, Kerala University of Fisheries and Ocean Studies

DOI:

https://doi.org/10.22364/eeb.22.08

Keywords:

Bacillus velezensis SNR14-4, bioinformatics, gene clusters, whole genome sequencing, xenobiotics

Abstract

Bacillus velezensis is a member of the genus Bacillus, which harbours useful, novel, and efficient secondary metabolites that can be utilized in the disruption of xenobiotics. Although a few strains of B. velezensis and related species are reported every year as having xenobiotic metabolism potential, several novel gene clusters are still unexplored, which could be more potent than those already discovered. The current B. velezensis strain was isolated from gills of healthy Oreochromis niloticus and the novelty of the strain was assessed through whole genome sequence analysis. Prokka, DFAST, BAKTA, and RASTtk were computational tools utilized for genome elucidation following the genome assembly. Protein and protein pathway prediction was achieved through the PATRIC database. Additionally, the resistance genes against microorganisms were examined through CARD (via Proksee), bacteriocin, and RiPPs using BAGEL4, and forecast of virulence factors using VFDB in PATRIC. The analysis led to identification of indicator genes for xenobiotic breakdown. The results were compared to pre-existing strains of B. velezensis and it was compelling to conclude the high biotechnological potential and the candidacy of the strain in xenobiotic degradation.

References

Adeniji A.A., Loots D.T., Babalola O.O. 2019. Bacillus velezensis: phylogeny, useful applications, and avenues for exploitation. Appl. Microbiol. Biotechnol. 103: 3669–3682.

Alenezi F.N., Slama H.B., Bouket A.C., Cherif-Silini H., Silini A., Luptakova L., Nowakowska J.A., Oszako T., Belbahri L. 2021. Bacillus velezensis: a treasure house of bioactive compounds of medicinal, biocontrol and environmental importance. Forests 12: 1714.

Arora P.K. 2020. Bacilli-mediated degradation of xenobiotic compounds and heavy metals. Front. Bioeng. Biotechnol. 8: 570307.

Cheffi M., Chenari Bouket A., Alenezi F.N., Luptakova L., Belka M., Vallat A., Rateb M., Tounsi S, Triki M.A., Belbahri L. 2019. Olea europaea L. root endophyte Bacillus velezensis OEE1 counteracts oomycete and fungal harmful pathogens and harbours a large repertoire of secreted and volatile metabolites and beneficial functional genes. Microorganisms 7: 314.

Chen L., Gu W., Xu H.Y., Yang G.L., Shan X.F., Chen G., Kang Y.H., Wang C.F., Qian A.D. 2018. Comparative genome analysis of Bacillus velezensis reveals a potential for degrading lignocellulosic biomass. 3 Biotech 8: 253.

Chen X.H., Koumoutsi A., Scholz R., Schneider K., Vater J., Süssmuth R., Piel J., Borriss R. 2009. Genome analysis of Bacillus amyloliquefaciens FZB42 reveals its potential for biocontrol of plant pathogens. J. Biotechnol. 140: 27–37..

Ding Y., Wei S., Zhang G. 2024. Complete genome sequence analysis of a biosurfactant-producing bacterium Bacillus velezensis L2D39. Mar. Genom. 76: 101113.

El-Hawary S.S., Hassan M.H.A., Hudhud A.O., Abdelmohsen U.R., Mohammed R. 2023. Elicitation for activation of the actinomycete genome’s cryptic secondary metabolite gene clusters. RSC Adv. 13: 5778–5795.

Fan B., Blom J, Klenk H.P., Borriss R. 2017. Bacillus amyloliquefaciens, Bacillus velezensis, and Bacillus siamensis form an “Operational Group B. amyloliquefaciens” within the B. subtilis species complex. Front. Microbiol. 8: 22.

Gangola S., Bhandari G., Joshi S., Sharma A., Simsek H., Bhatt P. 2023. Esterase and ALDH dehydrogenase-based pesticide degradation by Bacillus brevis 1B from a contaminated environment. Environ. Res. 232: 116332.

Grant J.R., Enns E., Marinier E., Mandal A., Herman E.K., Chen C.Y., Graham M., Van Domselaar G., Stothard P. 2023. Proksee: in-depth characterization and visualization of bacterial genomes. Nucleic Acids Res. 51: W484–W492.

Hur J.Y., Jeong E., Kim Y.C., Lee S.R. 2023. Strategies for natural product discovery by unlocking cryptic biosynthetic gene clusters in fungi. Separations 10: 333.

Jakinala P., Lingampally N., Kyama A. 2019. Hameeda B. Enhancement of atrazine biodegradation by marine isolate Bacillus velezensis MHNK1 in presence of surfactin lipopeptide. Ecotoxicol. Environ. Safety 182: 109372.

Jerbi M.A., Ouanes Z., Besbes R., Achour L, Kacem A. 2011. Single and combined genotoxic and cytotoxic effects of two xenobiotics widely used in intensive aquaculture. Mutat. Res. 724: 22–27.

Jyothi S.N., Thomas G.M., Rohith Raj R.V., Masetti A., Tammana A., Motheram M., Gutlapalli N.C. 2021. Assessment of water quality index and study of the impact of pollution on the rivers of Kerala. Mater. Today Proceed. 43: 3447–3451.

Kang M., Su X., Yun L., Shen Y., Feng J., Yang G., Meng X., Zhang J., Chang X. 2022. Evaluation of probiotic characteristics and whole genome analysis of Bacillus velezensis R-71003 isolated from the intestine of common carp (Cyprinus carpio L.) for its use as a probiotic in aquaculture. Aquat. Rep. 25: 101254.

Lesanavičius M., Seo D., Maurutytė G., Čėnas N. 2024. Redox properties of Bacillus subtilis ferredoxin:NADP+ oxidoreductase: potentiometric characteristics and reactions with pro-oxidant xenobiotics. Int. J. Mol. Sci. 25: 5373.

Liu G., Kong Y., Fan Y., Geng C., Peng D., Sun M. 2017. Whole-genome sequencing of Bacillus velezensis LS69, a strain with a broad inhibitory spectrum against pathogenic bacteria. J. Biotechnol. 249: 20–24.

López-Moreno A., Torres-Sánchez A., Acuña I, Suárez A., Aguilera M. 2021. Representative Bacillus sp. AM1 from gut microbiota harbor versatile molecular pathways for bisphenol A biodegradation. Int. J. Mol. Sci. 22: 4952.

Mohan H., Lim JM., Lee S.W., Cho M., Park Y.J., Seralathan K.K., Oh B.T. 2020. Enhanced removal of bisphenol A from contaminated soil by coupling Bacillus subtilis HV-3 with electrochemical system. Chemosphere 249: 126083.

Ngalimat M.S., Yahaya R.S., Baharudin M.M., Yaminudin S.M., Karim M., Ahmad S.A., Sabri S. 2021. A review on the biotechnological applications of the operational group Bacillus amyloliquefaciens. Microorganisms 9: 614.

Ochi K. 2017. Insights into microbial cryptic gene activation and strain improvement: principle, application and technical aspects. Antibiotics 70: 25–40.

Olson R.D., Assaf R., Brettin T., Conrad N., Cucinell C., Davis JJ., Dempsey D.M., Dickerman A., Dietrich E.M., Kenyon R.W., Kuscuoglu M. 2023. Introducing the Bacterial and Viral Bioinformatics Resource Center (BV-BRC): a resource combining PATRIC, IRD and ViPR. Nucleic Acids Res. 51: D678–D689.

Onaka H. 2017. Novel antibiotic screening methods to awaken silent or cryptic secondary metabolic pathways in Actinomycetes. J. Antibiot. 70: 865–870.

Park Y.K., Chin Y.-W. 2023. Degradation of bisphenol A by Bacillus subtilis P74 isolated from traditional fermented soybean foods. Microorganisms 11: 2132.

Ramesh D., Vinothkanna A., Rai A.K., Vignesh V.S. 2015). Isolation of potential probiotic Bacillus spp. and assessment of their subcellular components to induce immune responses in Labeo rohita against aeromonas hydrophila. Fish Shellfish Immunol. 45: 268–276.

Ray A.K., Roy T., Mondal S., Ringø E. 2009. Identification of gut-associated amylase, cellulase and protease-producing bacteria in three species of Indian major carps. Aquat. Res. 41: 1462–1469.

Reda R.M., Selim K.M., El-Sayed H.M., El-Hady M.A. 2018. In vitro selection and identification of potential probiotics isolated from the gastrointestinal tract of Nile tilapia, Oreochromis niloticus. Probiot. Antimicrob. Prot. 10: 692–703.

Santos R.A., Oliva-Teles A., Pousão-Ferreira P., Jerusik R., Saavedra M.J., Enes P., Serra C.R. 2021. Isolation and characterization of fish-gut Bacillus spp. as source of natural antimicrobial compounds to fight aquaculture bacterial diseases. Mar. Biotechnol. 23: 276–293.

Schwengers O., Jelonek L., Dieckmann M.A., Beyvers S., Blom J., Goesmann A. 2021. Bakta: rapid and standardized annotation of bacterial genomes via alignment-free sequence identification. Microb. Gen. 7: 000685.

Song S., Hwang C.W. 2024. Microbial degradation of the benzimidazole fungicide carbendazim by Bacillus velezensis HY-3479. Int. Microbiol. 27: 797–805.

Sultana O.F., Lee S., Seo H., Mahmud H.A., Kim S., Seo A., Kim M., Song H.Y.2021. Biodegradation and removal of PAHs by Bacillus velezensis isolated from fermented food. J. Microbiol. Biotechnol. 31: 999–1010.

Tanizawa Y., Fujisawa T., Nakamura Y. 2018. DFAST: a flexible prokaryotic genome annotation pipeline for faster genome publication. Bioinformatics 34: 1037–1039.

Teixeira G.M., Mosela M., Nicoletto M.L.A., Ribeiro R.A., Hungria M., Youssef K., Higashi A.Y., Mian S., Ferreira A.S., Gonçalves L.S.A., Pereira U.P., de Oliveira A.G. 2021. Genomic insights into the antifungal activity and plant growth-promoting ability in Bacillus velezensis CMRP 4490. Front Microbiol. 11: 618415.

ul Haq I., Mir U.A., Rehman S., Wani R.F.C., Hussain M.S., Shah I.M. 2023. Effects of xenobiotics and their degradation in aquatic life. In: Rather M.A., Amin A., Hajam Y.A., Jamwal A., Ahmad I. (Eds.) Xenobiotics in Aquatic Animals. Springer, Singapore, pp. 369–385.

von Krogh K., Higgins J., Saavedra Torres Y., Mocho J.P. 2021. Screening of anaesthetics in adult zebrafish (Danio rerio) for the induction of euthanasia by overdose. Biology 10/11: 1133.

Vörös M., Manczinger L., Kredics L., Szekeres A., Shine K., Alharbi N.S., Khaled J.M., Vágvölgyi C. 2019.Influence of agro-environmental pollutants on a biocontrol strain of Bacillus velezensis. Microbiol. Open 8: e00660.

Wang J., Xing J., Lu J., Sun Y., Zhao J., Miao S., Xiong Q., Zhang Y., Zhang G. 2019. Complete genome sequencing of Bacillus velezensis WRN014, and comparison with genome sequences of other Bacillus velezensis strains. J. Microbiol. Biotechnol. 29: 794–808.

Wattam A.R., Abraham D., Dalay O., Disz T.L., Driscoll T., Gabbard J.L., Gillespie J.J, Gough R., Hix D., Kenyon R., Machi D. 2014. PATRIC, the bacterial bioinformatics database and analysis resource. Nucleic Acids Res. 42: D581–D591.

Xu Z., Zhang H., Sun X., Liu Y., Yan W., Xun W., Shen Q., Zhang R. 2019. Bacillus velezensis wall teichoic acids are required for biofilm formation and root colonization. Appl. Environ. Microbiol. 85: e02116-18.

Yi Y., Zhang Z., Zhao F., Liu H., Yu L., Zha J., Wang G. 2018. Probiotic potential of Bacillus velezensis JW: Antimicrobial activity against fish pathogenic bacteria and immune enhancement effects on Carassius auratus. Fish Shellfish Immunol. 78: 322–330.

Zarins-Tutt J.S., Barberi T.T., Gao H., Mearns-Spragg A., Zhang L., Newman D.J., Goss R.J. 2016. Prospecting for new bacterial metabolites: a glossary of approaches for inducing, activating, and upregulating the biosynthesis of bacterial cryptic or silent natural products. Nat. Prod. Rep. 33: 54–72.

Zarins-Tutt J.S., Barberi T.T., Gao H., Mearns-Spragg A., Zhang L., Newman D.J., Goss R.J. 2016. Prospecting for new bacterial metabolites: a glossary of approaches for inducing, activating and upregulating the biosynthesis of bacterial cryptic or silent natural products. Nat. Prod. Rep. 33: 54–72.

Zhang D., Gao Y., Ke X., Yi M., Liu Z., Han X., Shi C., Lu M. 2019. Bacillus velezensis LF01: in vitro antimicrobial activity against fish pathogens, growth performance enhancement, and disease resistance against streptococcosis in Nile tilapia (Oreochromis niloticus). Appl. Microbiol. Biotechnol. 103: 9023–9035.

Downloads

Published

2024-06-20

How to Cite

Madhavan, S., Dinesh, N., Muhammed, R. N., John, D., Hariharan, S., & Nevin, K. G. (2024). Bioinformatic insights into the xenobiotic degradation potential gene clusters of fish-associated novel Bacillus velezensis SNR14-4. Environmental and Experimental Biology, 22(2), 79–86. https://doi.org/10.22364/eeb.22.08