Comparison of two subspecies of a halophytic multi-use plant Mertensia maritima in vitro and ex vitro: propagation, salinity tolerance and mineral nutrition

Authors

DOI:

https://doi.org/10.22364/eeb.22.04

Keywords:

halophyte, ion accumulation, Mertensia maritima, mineral nutrition, propagation, salinity, temporary immersion system, tissue culture

Abstract

The aim of the present study was to compare morphological and physiological responses to increasing salinity of the two subspecies of Mertensia maritima during in vitro propagation in two different systems, and subsequent ex vitro cultivation. Plants were brought into culture using seeds and further propagated on Murashige and Skoog medium supplemented with thidiazuron and naphthaleneacetic acid either on agar-solidified or liquid medium with a temporary immersion system (Plantform bioreactors). Salinity tolerance were tested both in tissue culture and with ex vitro greenhouse-cultivated plants. Low concentration of NaCl increased explant biomass in agar-solidified medium, with no negative consequences even at high concentration. However, the effect of salinity on liquid medium was genotype-specific. Explants in Plantform bioreactors showed several-fold higher biomass in comparison to that on agar-solidified medium, but the multiplication potential was not significantly affected. Ex vitro plants were negatively influenced by increasing NaCl concentration in substrate. In contrast to in vitro plants, accumulation potential of Na⁺ in ex vitro plants was low. One of adaptations to salinity at the whole plant level was maintenance of adequate tissue mineral nutrient homeostasis, as mineral nutrient concentrations were not negatively affected by increasing salinity.

References

Adelberg J. 2008. Agitated, thin-films of liquid media for efficient micropropagation. In Gupta S.D.; Ibaraki Y. (Eds) Plant Tissue Culture Engineering. Springer Verlag, Heidelberg, Germany, pp. 101–117.

Ager T.A., Ager L.P. 1980. Ethnobotany of the Eskimos of Nelson Island, Alaska. Arctic Anthropol. 27: 26–48.

Alton S., FitzGerald R. 2009. 644. Mertensia maritima. Curtis Bot. Mag. 26: 96–110.

Bajji M., Kinet J.-M., Lutts S. 1998.Salt stress effects on roots and leaves of Atriplex halimus L. and their corresponding callus cultures. Plant Sci. 137: 131–142.

Barykina R.P., Alyonkin V.Y. 2019. Propagation modes in Boraginaceae: Biomorphological and anatomical analyses. Wulfenia 26: 155–174.

Copetta A., Bazzicalupo M., Cassetti A., Marchioni I., Mascarello C., Cornara L., Pistelli L., Ruffoni B. 2021. Plant production and leaf anatomy of Mertensia maritima (L.) Gray: comparison of in vitro culture methods to improve acclimatization. Horticulturae 7: 111.

Custódio L., Charles G., Magné C., Barba-Espin G., Piqueras A., Hernández J.A., Ben Hamed K., Castañeda-Loaiza V., Fernandes E., Rodrigues M.J. 2023. Application of in vitro plant tissue culture techniques to halophyte species: a review. Plants 12: 126.

De Carlo A., Tarraf W., Lambardi M., Benelli C. 2021. Temporary immersion system for production of biomass and bioactive compounds from medicinal plants. Agronomy 11: 2414.

Etienne H., Berthouly M. 2002. Temporary immersion systems in plant micropropagation. Plant Cell Tissue Organ Cult. 69: 215–231.

Farzana T., Guo Q., Rahman M.S., Rose T.J., Barkla B.J. 2023. Salinity and nitrogen source affect productivity and nutritional value of edible halophytes. PLoS ONE 18: e028854.

Fedoreyev S.A., Inyushkina Y.V., Bulgakov V.P., Veselova M.V., Tchernoded G.K., Gerasimenko A.V., Zhuravlev Y.N. 2012. Production of allantoin, rabdosiin and rosmarinic acid in callus cultures of the seacoastal plant Mertensia maritima (Boraginaceae). Plant Cell Tissue Organ Cult. 110: 183–188.

Flowers T.J., Munns R., Colmer T.D. 2015. Sodium chloride toxicity and the cellular basis of salt tolerance in halophytes. Ann. Bot. 115: 419–431.

Freipica I., Ievinsh G. 2010. Relative NaCl tolerance of rare and endangered coastal plant species in conditions of tissue culture. Environ. Exp. Biol. 8: 35–42.

Grattan S.R.; Grieve C.M. 1998. Salinity–mineral nutrient relations in horticultural crops. Sci. Hortic. 78: 127–157.

Hu Y., Schmidhalter U. 2005. Drought and salinity: A comparison of their effects on mineral nutrition of plants. J. Plant Nutr. Soil Sci. 168: 541–549.

Ievinsh G. 2023. Water content of plant tissues: so simple that almost forgotten? Plants 12: 1238.

Ievinsh G., Ieviņa S., Andersone-Ozola U., Samsone I. 2021. Leaf sodium, potassium and electrolyte accumulation capacity of plant species from salt-affected coastal habitats of the Baltic Sea: Towards a definition of Na hyperaccumulation. Flora 274: 151748.

Imaizumi T., Kay S.A. 2006. Photoperiodic control of flowering: noy only by coincidence. Trends Plant Sci. 11: 550-558/

Jēkabsone A., Karlsons A., Osvalde A., Ievinsh G. 2024. Effect of Na, K and Ca salts on growth, physiological performance, ion accumulation and mineral nutrition of Mesembryanthemum crystallinum. Plants 13: 190.

Jēkabsone A., Kuļika J., Romanovs M., Andersone-Ozola U., Ievinsh G. 2023. Salt tolerance and ion accumulation in several halophytic plant species depending on the type of anion. Int. J. Plant Biol. 14: 1131–1154.

Joshi M., Mishra A., Jha B. 2012. NaCl plays a key role for in vitro micropropagation of Salicornia brachiata, an extreme halophyte. Industr. Crops Prod. 35: 313–316.

Jurado-Mañogil C., Díaz-Vivancos P., Hernández J.A., Piqueras A., Barba-Espín G. 2024. Efficient in vitro platform for multiplication, acclimatization, and deliver of high-NaCl-tolerant clones of the halophyte Arthrocaulon macrostachyum. J. Plant Growth Reg. https://doi.org/10.1007/s00344-023-11210-w

Koyro H.-W., Geissler N., Seenivasan R., Huchzermeyer B. 2011. Plant stress physiology: physiological and biochemical strategies allowing plants/crops to thrive under ionic stress. In Pessarakli, M. (Ed.) Handbook of Plant and Crop Stress. 3rd Ed. Taylor & Francis, Boca Raton, USA, pp. 1051–1093.

Li Z., Seliskar D.M., Moga J.A., Gallagher J.L. 1995. Plant regeneration from callus cultures of salt marsh hay, Spartina patens, and its cellular-based salt tolerance. Aquatic Bot. 51: 103–113.

Lokhande V.H., Nikam T.D., Patade V.Y., Ahire M.L., Suprasanna P. 2011. Effects of optimal and supra-optimal salinity stress on antioxidative defence, osmolytes and in vitro growth responses in Sesuvium portulacastrum L. Plant Cell Tissue Organ Cult. 104: 41–49.

Lokhande V.H., Nikam T.D., Penna S. 2010. Biochemical, physiological and growth changes in response to salinity in callus cultures of Sesuvium portulacastrum L. Plant Cell Tissue Organ Cult. 102: 17–25.

Lokhande V.H., Nikam T.D., Suprasanna P. 2009. Sesuvium portulacastrum L. a promosing halophyte: cultivation, utilization and distribution in India. Genet. Resour. Crop Evol. 56: 741–747.

Martini A.N., Papafotiou M. 2020. In vitro propagation and NaCl tolerance of the multipurpose medicinal halophyte Limoniastrum monopetalum. HortScience 55: 436–443.

Mirzabe A.H., Hajiahmad A., Fadavi A., Rafiee S. 2022. Temporary immersion systems (TISs): A comprehensive review. J. Biotechnol. 357: 56–83.

Ozoliņa K.A., Jēkabsone A., Andersone-Ozola U., Ievinsh G. 2024. Comparison of growth and physiological effects of soil moisture regime on Plantago maritima plants from geographically isolated sites on the eastern coast of the Baltic Sea. Plants 13: 633.

Park H.Y., Kim D.H., Saini R.K., Gopal J., Keum Y.S., Sivanesan I. 2019. Micropropagation and quantification od bioactive compounds in Mertensia maritima (L.) Gray. Int. J. Mol. Sci. 20: 2141.

Purmale L., Jēkabsone A., Andersone-Ozola U., Ievinsh G. 2022a. Salinity tolerance, ion accumulation potential and osmotic adjustment in vitro and in planta of different Armeria maritima accessions from a dry coastal meadow. Plants 11: 2570.

Purmale L., Jēkabsone A., Andersone-Ozola U., Karlsons A., Osvalde A., Ievinsh G. 2022b. Comparison of in vitro and in planta heavy metal tolerance and accumulation potential of different Armeria maritima accessions from a dry coastal meadow. Plants 11: 2104.

Redondo-Gómez S., Wharmby C., Castillo J.M., Mateos-Naranjo E., Luque C.J., de Cires A., Luque T., Davy A.J., Figueroa M.E. 2006. Growth and photosynthetic responses to salinity in an extreme halophyte, Sarcocornia fruticosa. Physiol. Plant. 128: 116–124.

Romero J.M., Marañón T. 1996. Allocation of biomass and mineral elements in Melilotus segetalis (annual sweetclover): effects of NaCl salinity and plant age. New Phytol. 132: 565–573.

Ruffoni B., Savona M. 2003. The temporary immersion system (T.I.S.) for the improvement of micropropagation of ornamental plants. Acta Hortic. 683: 445–454.

Santos J., Al-Azzawi M., Aronson J., Flowers T.J. 2016. eHALOPH a database of salt–tolerant plants: helping put halophytes to work. Plant Cell Physiol. 57: e10.

Scott G.A.M. 1963. Mertensia maritima (L.) S. F. Gray. J. Ecol. 51: 722–742.

Skarpaas O., Stabbetrop O.E. 2001. Diaspore ecology of Mertensia maritima: effects of physical treatments and their relative timing on dispersal and germination. OIKOS 95: 374–382.

Smith M.K., McComb J.A. 1981. Effect of NaCl on the growth of whole plants and their corresponding callus cultures. Austr. J. Plant Physiol. 8: 267–275.

Song K., Sivanesan I., Ak G.; Zengin G., Cziàky Z., Jeko J., Rengasamy K.R.R., Lee O.N., Kim D.H. 2020. Screening of biological activities of calli, shoots, and seedlings of Mertensia maritima (L.) Gray. Plants 9: 155.

Zhou C., Shen W., Lu C., Wang H., Xiao Y., Zhao Y., An S. 2015. Effects of salinity on the photosynthesis of two Poaceous halophytes. Clean Soil Air Water 43: 1660–1665

Downloads

Published

2024-04-17

How to Cite

Purmale, L., Osvalde, A., Karlsons, A., & Ievinsh, G. (2024). Comparison of two subspecies of a halophytic multi-use plant Mertensia maritima in vitro and ex vitro: propagation, salinity tolerance and mineral nutrition. Environmental and Experimental Biology, 22(1), 29–40. https://doi.org/10.22364/eeb.22.04