Foliar application of commercial humic substances for possible increase of nutrient status and yield of oilseed rape
DOI:
https://doi.org/10.22364/eeb.22.01Keywords:
Brassica napus, humic substances, leaf analysis, peat extract, seed analysis, thousand seed mass, vermicompost extractAbstract
Inconsistent results on the effects of humic substances (HS) on yield and nutrient status of important food crops, including oilseeds, confirm the need for further research on different HS products to match their use to actual field conditions. The aim of this study was to evaluate the effect of foliar application of commercially produced peat- and vermicompost-derived HS preparations on nutrient status and yield of spring oilseed rape (Brassica napus). The field experiment was carried out in Stende State Cereals Breeding Institute, Latvia, during the vegetation season of 2012, using the spring oilseed rape cultivar ‘Perfect’. Although foliar sprays of HS were applied during the critical stages of crop development from rapid growth to flowering, they were ineffective in improving the supply of the deficient nutrients (N, K, B, Zn, Cu) in leaves. Moreover, both tested HS products caused a decrease in Cu and B content in the seeds, which resulted in a negative trend in oilseed rape seed yield. Therefore, the conducted experiment demonstrated that foliar application of both HS preparations was ineffective to promote nutrient status and did not contribute to spring oilseed rape yield.
References
Adhikary S. 2012. Vermicompost, the story of organic gold: a review. Agric. Sci. 3: 905–917.
Agriculture of Latvia. Collection of Statistics. 2022. Central Statistical Bureau of Latvia, Riga, Latvia, 85 p.
Ahmad T., Khan R., Nawaz Khattak T. 2018. Effect of humic acid and fulvic acid based liquid and foliar fertilizers on the yield of wheat crop. J. Plant Nutr. 41: 2438–2445.
Akladious S.A., Mohamed H.I. 2018. Ameliorative effects of calcium nitrate and humic acid on the growth, yield component and biochemical attribute of pepper (Capsicum annuum) plants grown under salt stress. Sci. Hortic. 236: 244–250.
Amiri M., Rad A.H.S., Valadabadi A., Sayfzadeh S., Zakerin H. 2020. Response of rapeseed fatty acid composition to foliar application of humic acid under different plant densities. Plant Soil Environ. 66: 303–308.
Ampong K., Thilakaranthna M.S., Gorim L.Y. 2022. Understanding the role of humic acids on crop performance and soil health. Front. Agron. 4: 848621.
Ayuso M., Hernández T., Garcia C., Pascual J.A. 1996. Stimulation of barley growth and nutrient absorption by humic substances originating from various organic materials. Bioresour. Technol. 57: 251–257.
Balmori M.D., Domínguez C.Y.A., Carreras C.R., Rebatos S.M., Farías L.B.P., Izquierdo F.G., Berbara R.L.L., Calderín García A. 2019. Foliar application of humic liquid extract from vermicompost improves garlic (Allium sativum L.) production and fruit quality. Int. J. Recycl. Org. Waste Agric. 8: S103–S112.
Barekati F., Hervan E.M., Rad A.H.S., Noor Mohamadi G. 2019. Effect of sowing date and humic acid foliar application on yield and yield components of canola cultivars. Tarim Bilimleri Dergisi 25: 70–78.
Bouchet A.S., Laperche A., Bissuel-Belaygue C., Snowdon R., Nesi N., Stahl A. 2016. Nitrogen use efficiency in rapeseed. A review. Agron. Sustain. Dev. 36: 1–20.
Bremanis G., Klavinsh M., Purmalis O., Ziemelis R., Malecka S. 2013. Peat humic substances and earthworm biohumus extracts for agricultural applications. Proc. Latvian Acad. Sci. B 67: 236–241.
Canellas L.P., Olivares F.L., Aguiar N.O., Jones D.L., Nebbioso A., Mazzei P., Piccolo A. 2015. Humic and fulvic acids as biostimulants in horticulture. Sci. Hortic. 196: 15–27.
Cekstere G., Osvalde A., Elferts D., Rose C., Lucas F., Vollenweider P. 2020. Salt accumulation and effects within foliage of Tilia × vulgaris trees from the street greenery of Riga, Latvia. Sci. Total Environ. 747: 140921.
Chmielewska A., Kozłowska M., Rachwał D., Wnukowski P., Amarowicz R., Nebesny E., Rosicka-Kaczmarek J. 2021. Canola/rapeseed protein–nutritional value, functionality and food application: a review. Crit. Rev. Food Sci. Nutr. 61: 3836–3856.
de Hita D., Fuentes M., Fernández V., Zamarreño A.M., Olaetxea M., García-Mina J.M. 2020. Discriminating the short-term action of root and foliar application of humic acids on plant growth: emerging role of jasmonic acid. Front. Plant Sci. 11: 493.
de Moura O.V.T., Berbara R.L.L., de Oliveira Torchia D.F., Oliveira Da Silva H.F., van Tol de Castro T.A., Tavares O.C.H., Fernandes Rodrigues N., Zonta E., Azevedo Santos L., Calderín García A. 2023. Humic foliar application as sustainable technology for improving the growth, yield, and abiotic stress protection of agricultural crops. A review. J. Saudi Soc. Agri. Sci. 22: 493–513.
Dinçsoy M., Sönmez F. 2019. The effect of potassium and humic acid applications on yield and nutrient contents of wheat (Triticum aestivum L. var. Delfii) with same soil properties. J. Plant Nutr. 42: 2757–2772.
Elshamly A.M.S., Nassar S.M.A. 2023. Stimulating growth, root quality, and yield of carrots cultivated under full and limited irrigation levels by humic and potassium applications. Sci. Rep. 13: 14260.
European Commission. 2019. Delivering the European Green Deal. https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/european-green-deal/delivering-european-green-deal_en.
Fageria N.K. 2009. The Use of Nutrients in Crop Plants. CRC Press: Boca Raton, FL, USA, 448 p.
FAO. 2021. Food and Agriculture Organization of the United Nations: FAOSTAT Statistical Database. http://www.fao.org/faostat/en/#home.
Fatima N., Jamal A., Huang Z., Liaquat R., Ahmad B., Haider R., Ali M.I., Shoukat T., ALOthman Z.A., Ouladsmane M., Ali T., Ali S., Akhtar N., Sillanpää M. 2021. Extraction and chemical characterization of humic acid from nitric acid treated lignite and bituminous coal samples. Sustainability 13: 8969.
Fridrihsone A., Romagnoli F., Cabulis U. 2018. Life cycle inventory for winter and spring rapeseed production in Northern Europe. J. Clean. Prod. 177: 79–88.
García A.C., Santos L.A., Izquierdo F.G., Sperandio M.V.L., Castro R.N., Berbara R.L.L. 2012. Vermicompost humic acids as an ecological pathway to protect rice plant against oxidative stress. Ecol. Eng. 47: 203–208.
Grzebisz W., Przygocka-Cyna K., Szczepaniak W., Zawieja A. 2019. Impact of winter oilseed rape nutritional status during vegetative growth on yield. Plant Soil Environ. 65: 490–496.
Haider F.U., Liqun C., Coulter J.A., Cheema S.A., Wu J., Zhang R., Wenjun M., Farooq M. 2021. Cadmium toxicity in plants: Impacts and remediation strategies. Ecotoxicol. Environ. Safety 211: 111887.
Hartz T.K., Bottoms T.G. 2010. Humic substances generally ineffective in improving vegetable crop nutrient uptake or productivity. HortScience 45: 906–910.
Hemati A., Alikhani H.A., Babaei M., Ajdanian L., Lajayer B.A., van Hullebusch E.D. 2022. Effects of foliar application of humic acid extracts and indole acetic acid on important growth indices of canola (Brassica napus L.). Sci. Rep. 12: 20033.
Jankowski K.J., Sokólski M., Dubis B., Krzebietke S., Zarczynski P., Hulanicki P., Hulanicki P.S. 2016. Yield and quality of winter oilseed rape (Brassica napus L.) seeds in response to foliar application of boron. Agr. Food Sci. 25: 164–176.
Jarecki W. 2021. The reaction of winter oilseed rape to different foliar fertilization with macro- and micronutrients. Agriculture 11: 515.
Jindo K., Olivares F.L., Malcher D.J.P., Sánchez-Monedero M.A., Kempenaar C., Canellas L.P. 2020. From lab to field: role of humic substances under open-field and greenhouse conditions as biostimulant and biocontrol agent. Front. Plant Sci. 11: 426.
Karofeld E., Jarašius L., Priede A., Sendžikaite J. 2017. On the after-use and restoration of abandoned extracted peatlands in the Baltic countries: extracted peatlands in Baltics. Restor. Ecol. 25: 293–300.
Khan R.U., Khan M.Z., Khan A., Saba S., Hussain F., Jan I.U. 2018. Effect of humic acid on growth and crop nutrient status of wheat on two different soils. J. Plant Nutr. 41: 453–460.
Klavins M., Grandovska S., Obuka V., Ievinsh G. 2021. Comparative study of biostimulant properties of industrially and experimentally produced humic substances. Agronomy 11: 1250.
Krumins J., Klavins M., Tumilovich A., Irtiseva K., Mironovs V., Lapkovskis V., Ozolins J., Shishkin A. 2021. Potential of Baltic region peat in high added-value products and environmentally friendly applications - a review. Preprints 2021100244.
Leventoglu H., Erdal I. 2014. Effect of high humic substance levels on growth and nutrient concentration of corn under calcareous conditions. J. Plant Nutr. 37: 2074–2084.
Li J., Zhou Y., Gu H., Lu Z., Cong R., Li X., Ren T., Lu J. 2023. Synergistic effect of nitrogen and potassium on seed yield and nitrogen use efficiency in winter oilseed rape (Brassica napus L.). Eur. J. Agron. 148: 126875.
Lin Y., Watts D.B., Torbert H.A., Howe J.A. 2020. Influence of nitrogen rate on winter canola production in the southeastern United States. Agron. J. 112: 2978–2987.
Lyons G., Genc Y. 2016. Commercial humates in agriculture: real substance or smoke and mirrors? Agronomy 6: 50.
Ma B.L., Biswas D.K., Herath A.W., Whalen J.K., Ruan S.Q., Caldwell C., Earl H., Vanasse A., Scott P., Smith D.L. 2015. Growth, yield, and yield components of canola as affected by nitrogen, sulfur, and boron application. J. Plant Nutr. Soil Sci. 178: 658–670.
Monda H., McKenna A.M., Fountain R., Lamar R.T. 2021. Bioactivity of humic acids extracted from shale ore: molecular characterization and structure–activity relationship with tomato plant yield under nutritional stress. Front. Plant Sci. 12: 660224.
Nardi S., Schiavon M., Francioso O. 2021. Chemical structure and biological activity of humic substances define their role as plant growth promoters. Molecules 26: 2256.
Nollendorfs V., Čekstere G. 2012. Supply of nutrients to rapeseed. Saimnieks 8: 46–48. /in Latvian/
Orlovius K. 2000. Fertilizing for High Yield and Quality. Oilseed Rape. Basel, International Potash Institute Bulletin No. 16, 125 p.
Osvalde A., Karlsons A., Cekstere G., Malecka S. 2012. Effect of humic substances on nutrient status and yield of onion (Allium cepa L.) in field conditions. Proc. Latvian Acad. Sci., B 66: 192-199.
Osvalde A., Karlsons A., Cekstere G., Vojevode L. 2016. The effect of vermicompost-derived humic substances on nutrient status and yield of organic potato in field conditions. Acta Hortic. 1142: 277-284.
Paoli R., Feofilovs M., Kamenders A., Romagnoli F. 2022. Peat production for horticultural use in the Latvian context: Sustainability assessment through LCA modeling, J. Clean. Prod. 378: 134559.
Plank C.O., Tucker M.R. 2000. Canola. In: Campbell C.R. (Ed.) Reference Sufficiency Ranges for Plant Analysis in the Southern Region of the United States. Southern Cooperative Series Bulletin 394, p. 9–10.
Rahman N, Schoenau J. 2021. Response of different crop cultivars to micronutrient fertilization and relationship to rhizosphere soil properties. Commun. Soil Sci. Plant Anal. 52: 1286–1300.
Rahman N., Schoenau J. 2022. Bioavailability, speciation, and crop responses to copper, zinc, and boron fertilization in south-central Saskatchewan soil. Agronomy 12: 1837.
Rose M.T., Patti A.F., Little K.R., Brown A.L., Jackson W.R., Cavagnaro T.R. 2014. A meta–analysis and review of plant–growth response to humic substances: Practical implications for agriculture. Adv. Agron. 124: 37–89.
Sikorska A, Gugała M., Zarzecka K. 2020. The impact of foliar feeding on the yield components of three winter rape morphotypes (Brassica napus L.). Open Agric. 5: 107–116.
Szczepanek M., Wilczewski E., Grzybowski K. 2016. Response of winter oilseed rape (Brassica napus L.) on soil applied humus preparation and foliar potassium fertilizer. Acta Sci. Pol. Agric. 15: 85–94.
Szczepaniak W. 2015. The mineral profile of winter oilseed rape in critical growth stages-potassium. J. Elem. 20: 203–215.
Szczepaniak W., Grzebisz W., Potarzycki J., Łukowiak R., Przygocka-Cyna K. 2015. Nutritional status of winter oilseed rape in cardinal stages of growth as the yield indicator. Plant Soil Environ. 61: 291–296.
Vronskis O., Kakitis A., Laukmanis E., Nulle I. 2016. Earthworm biohumus conditioning for pellet production. In: Proceedings of the 15th International Scientific Conference “Engineering for Rural Development”, Jelgava, Latvia, 25–27 May, 2016; 15, pp. 997–1002.
Wysocki D.J., Corp M., Horneck D.A., Lutcher L.K. 2007. Irrigated and Dryland Canola. Nutrient Management Guide; EM 8943-E; Oregon State University, Corvallis, OR, USA, 8 p.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 University of LatviaThis is an open access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles in this journal without asking prior permission from the publisher or the author. This is in accordance with the BOAI definition of open access. Author(s) of the published papers retain copyright, the papers are made freely available for non-commercial purposes, allowing download, reuse, reprint and distribution of the material as long as the original authors and the source are cited. This license is equivalent to the CC BY-NC-ND.