Degradation properties of Rhizobium petrolearium on different concentrations of crude oil and its derivative fuels

Authors

  • Anwuli U. Osadebe University of Port Harcourt
  • Chika B. Chukwu University of Port Harcourt

DOI:

https://doi.org/10.22364/eeb.21.10

Keywords:

aliphatic hydrocarbons, biodegradation, bioremediation, bioresources, Rhizobium

Abstract

The degradative efficiency of the recently identified species, Rhizobium petrolearium, on crude oil, diesel, petrol and kerosene was analysed in this study in order to assess its potential as a bioresource in environmental remediation and to investigate the effect of pollutant concentration on degradation efficiency. The identity of the isolate was confirmed by 16S rRNA sequencing and the variation in crude oil and fuel concentration during the biodegradation assay were measured using gas chromatography. Crude oil and the fuels were readily biodegradable at both single and tenfold concentrations, with petrol being the most degraded by the end of the study. Pollutant concentration was shown to affect degradation properties. At 1% concentration, the hydrocarbon compounds were almost completely degraded (99.3 to 99.6%) by day 5, but at the 10% concentration, the degradation level ranged from 31.8 to 63.8% on day 21. Crude oil and diesel oil showed the lowest biodegradation rates at 1% concentration and had half-lives of 0.68 and 0.64 days, respectively. Crude oil and kerosene were the most poorly degraded at 10% concentration with half-lives of 39.61 and 19.80 days, respectively. The C9 – C17 aliphatic fractions were generally the most readily utilised. This study presents a description of the biodegradation capabilities of R. petrolearium against crude oil and its derivative fuels and provides data regarding the possible role of this isolate in the development of bioaugmentation-focused bioremediation systems.

References

Abdulsalam S., Omale, A.B. 2009. Comparison of biostimulation and bioaugmentation techniques for the remediation of used motor oil contaminated soil. Brazil. Arch. Biol. Technol. 52: 516–528.

Abonyi M.N., Menkiti M.C., Nwabanne J.T., Akpomie K. G. 2022. Kinetic modelling and half-life study on bioremediation of crude oil dispersed by palm bunch enhanced stimulant. Clean Chem. Eng. 2: 100031.

Adams G.O., Fufeyin, P.T., Okoro S.E., Ehinomen I. 2015. Bioremediation, biostimulation and bioaugmentation: A review. Int. J. Environ. Bioremed. Biodegrad. 3: 26–39.

Agarry S., Latinwo G.K. 2015. Biodegradation of diesel oil in soil and its enhancement by application of bioventing and amendment with brewery waste effluents as biostimulation-bioaugmentation agents. J. Ecol. Eng. 16: 82–91.

Agwu O.A., Ilori M.O., Nwachukwu S.U. 2013. Utilisation of drilling fluid base oil hydrocarbons by microorganisms isolated from diesel-polluted soil. Soil Sediment Contamin. 22: 817–828.

Ahamed F., Hasibullah M., Ferdouse J., Anwar M. N. 2010. Microbial degradation of petroleum hydrocarbon. Bangladesh J. Microbiol. 27: 10–13.

Allamin I.A., Halmi M.I.E., Nur Adeela Yasid N.A., Ahmad S.A., Abdullah S.R.S., Shukor Y. 2020. Rhizodegradation of petroleum oily sludge-contaminated soil using Cajanus cajan increases the diversity of soil microbial community. Sci. Rep. 10: 4094.

Andreolli M., Lampis S., Brignoli, P., Vallini G. 2015. Bioaugmentation and biostimulation as strategies for the bioremediation of a buried woodland soil contaminated by toxic hydrocarbons: a comparative study. J. Environ. Manage. 153: 121–131.

Bajagain R., Park Y., Jeong S.W. 2018. Feasibility of oxidation-biodegradation serial foam spraying for total petroleum hydrocarbon removal without soil disturbance. Sci. Total Environ. 626: 1236–1242.

Binazadeh M., Karimi I. A., Li Z. 2009. Fast biodegradation of long chain n-alkanes and crude oil at high concentrations with Rhodococcus sp. Moj-3449. Enz. Microbiol. Technol. 45: 195–202.

Cerqueira V.S., Hollenbach E.B., Maboni F., Vainstein M.H., Carmargo F.A.O., Bento F.M. 2011. Biodegradation potential of oily sludge by pure and mixed bacterial cultures. Bioresour. Technol. 102: 332–344.

Chaillan F., Chaineau C., Point V., Saliot A., Oudot A. 2006. Factors inhibiting bioremediation of soil contaminated with weathered oils and drill cuttings. Environ. Pollut. 144: 255–265.

Chaîneau C.H., Rougeux G., Yéprémian C., Oudot J. 2005. Effects of nutrient concentration on the biodegradation of crude oil and associated microbial populations in the soil. Soil Biol. Biochem. 37: 1490–1497.

Chaudhary D. K., Bajagain R., Jeong S., Kim J. 2020. Biodegradation of diesel oil and n-alkanes (C18, C20, and C22) by a novel strain Acinetobacter sp. K-6 in unsaturated soil. Environ. Eng. Res. 25: 290–298.

Cheesbrough M. 2006. District Laboratory Practice in Tropical Countries. Part II. Cambridge University Press, London, UK.

Chen Q., Li J., Liu M., Sun H., Bao M. 2017. Study on the biodegradation of crude oil by free and immobilised bacterial consortium in marine environment. PLoS ONE 12: e0174445.

Dadrasnia A., Agamuthu P. 2013. Diesel fuel degradation from contaminated soil by Dracaena reflexa using organic waste supplementation. J. Japan. Petrol. Inst. 56: 236–243.

Enujiugha V. N., Nwanna L. C. 2004. Aquatic oil pollution impact indicators. J. Appl. Sci. Environ. Manage. 8: 71–75.

Galazka A., Grzadziel J., Galazka R., Ukalska-Jaruga A., Strzelecka J., Smreczak B. 2018. Genetic and functional diversity of bacterial microbiome in soils with long term impacts of petroleum hydrocarbons. Front. Microbiol. 9: 1923.

Galitskaya P., Biktasheva L., Blagodatsky S., Selivanovskaya S. 2021. Response of bacterial and fungal communities to high petroleum pollution in different soils. Sci. Rep. 11: 164.

González-Paredes Y., Alarcón A., Ferrera-Cerrato R., Almaraz J. J., Martínez-Romero E., Cruz-Sánchez J. S., Mendoza-López M. R., Ormeño-Orrillo E. 2013. Tolerance, growth and degradation of phenanthrene and benzo[a]pyrene by Rhizobium tropici CIAT 899 in liquid culture medium. Appl. Soil Ecol. 63: 105–111.

Gouda M.K., Omar S.H., Chekroud Z.A., Nour Eldin H.M. 2007. Bioremediation of kerosene I: A case study in liquid media. Chemosphere 69: 1807–1814.

Haritash A. K., Kaushik C. P. 2009. Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): A review. J. Hazard. Mater. 169: 1–15.

Holt G.T., Krieg R.N., Sneath P.H.A., Staley T.J., Williams T.S. 1994. Bergey’s Manual of Determinative Bacteriology. 9th Ed. Williams and Wilkins, Baltimore, USA.

Huang H., Bowler B. F., Oldenburg T., Larter S. 2004. The effect of biodegradation on polycyclic aromatic hydrocarbons in reservoired oils from the Liaohe basin, NE China. Org. Geochem. 35: 1619–1634.

Huang X., Shi J., Cui C., Yin H., Zhang R., Ma X., Zhang, X. 2016. Biodegradation of phenanthrene by Rhizobium petrolearium SL-1. J. Appl. Microbiol. 121: 1616–1626.

Jørgensen S.E. 2008. Biodegradation In: Jørgensen S.E., Fath B.D. (Eds.) Encyclopedia of Ecology. Vol. 1 A–C. Elsevier B.V., Amsterdam, The Netherlands.

Kniemeyer O., Fischer T., Wilkes H., Glockner F., Widdel F. 2005. Anaerobic degradation of ethylbenzene by a new type of marine sulphate reducing bacterium. Appl. Environ. Microbiol. 2: 760–768.

Laleh Y., Nefil S., Hausler R., Guidot S. R. 2006. Removal of pyrene and benzo[a]pyrene from contaminated water by sequential and simultaneous ozonation and biotreatment. Water Environ. Res. 78: 2286–2292.

Ławniczak Ł., Woźniak-Karczewska M., Loibner A.P., Heipieper H.J., Chrzanowski Ł. 2020. Microbial degradation of hydrocarbons – basic principles for bioremediation: A review. Molecules 25: 856.

Macaulay B.M. 2015. Understanding the behaviour of oil-degrading micro-organisms to enhance the microbial remediation of spilled petroleum. Appl. Ecol. Environ. Res. 13: 247–262.

Marchal R., Penet S., Solano-Serena F., Vandecasteele J. P. 2003. Gasoline and diesel oil biodegradation. Oil and Gas Science and Technology – Revue de L’IFP 58: 441–448.

Mansir N., Jones M. 2012. Environmental impact of marine oil spill: a case study of DeepWater Horizon oil spill at the Gulf of Mexico, United States of America 2010 (A review). Chemsearch J. 3: 64–70.

Militon C., Boucher D., Vachelard C. 2010. Bacterial community changes during bioremediation of aliphatic hydrocarbon- contaminated soil. FEMS Microbiol. Ecol. 74: 669–681.

Nasser B., Ramadan A.R., Hamzah R.Y., Mohammed M.E., Ismail W.A. 2017. Detection and quantification of sulphate-reducing and polycyclic aromatic hydrocarbon degrading bacteria in oilfield using functional markers and quantitative PCR. J. Petrol Environ. Biotechnol. 8: 1000348.

Okpokwasili G.C., Okorie B.B. 1988. Biodegradation potentials of microorganisms isolated from car engine lubricating oil. Tribiol. Int. 21: 215–220.

Okpokwasili G.C., Olisa, A.O. 1991. River water biodegradation of surfactants in liquid detergents and shampoos. Water Res. 2: 1425–1429.

Onwurah I., Ogugua V., Onyike N., Ochonogor A., Otitoju O. 2007. Crude oil spills in the environment, effects and some innovative clean-up biotechnologies. Int. J. Environ. Res. 1: 307–320.

Raju M. N., Leo R., Herminia S. S., Moran R. E. B., Venkateswarlu K., Scalvenzi L. 2017. Biodegradation of diesel, crude oil and spent lubricating oil by soil isolates of Bacillus spp. Bull. Environ. Contamin. Toxicol. 98: 698–705.

Scott N., Hess M., Bouskill N., Mason O., Jansson J., Gilbert J. 2014. The microbial nitrogen cycling potential is impacted by polyaromatic hydrocarbon pollution of marine sediments. Front Microbiol. 5: 1–8.

Shayanfar A., Eghrary S. H., Sardari F., Acree W. E., Jouyban A. 2011. Solubility of anthracene and phenanthrene in ethanol + 2,2,4-trimethylpentane mixtures at different temperatures. J. Chem. Eng. Data 56: 2290–2294.

Spiecker P.M., Gawrys K.L., Trail C.B., Kilpatrick P.K. 2003. Effects of petroleum resins on asphaltene aggregation and water-in-oil emulsion formation. Colloids Surf. A Physicochem. Eng. Aspects 220: 9–27.

Stroud J., Paton G., Semple K. 2007. Microbe-aliphatic hydrocarbon interactions in soil implication for biodegradation and bioremediation. J. Appl. Microbiol. 102: 1239–1253.

Tan Z., Hurek T., Vinuesa P., Müller P., Ladha J. K., Reinhold-Hurek B. 2001. Specific detection of Bradyrhizobium and Rhizobium strains colonizing rice (Oryza sativa) roots by 16S-23S ribosomal DNA intergenic spacer-targeted PCR. Appl. Environ. Microbiol. 67: 3655 – 3664.

Tarr M.A., Zito P., Overton E. B., Olson G. M., Adhikari P. L., Reddy C. M. 2016. Weathering of oil spilled in the marine environment. Oceanography 29: 126–135.

Truskewycz A., Gundry T.D., Khudur L.S., Kolobaric A., Taha M., Aburto-Medina A., Ball A.S., Shahsavari E. 2019. Petroleum hydrocarbon contamination in terrestrial ecosystems—fate and microbial responses. Molecules 24: 3400.

Uba B. O., Akunna M. C., Okemadu O. C., Umeh C. J. 2019. Kinetics of biodegradation of total petroleum hydrocarbon in diesel contaminated soil as mediated by organic and inorganic nutrients. Anim. Res. Int. 16: 3295–3307.

Ubalua, A. O. 2011. Bioremediation strategies for oil polluted marine ecosystems. Austral. J. Agric. Eng. 2: 160–168.

USEPA. 1996. Method 3560 – Supercritical extraction for total recoverable petroleum hydrocarbons (TRPHs). United States Environmental Protection Agency, Washington DC, USA.

Vaidehi K., Kulkarni S. 2012. Microbial remediation of polycyclic aromatic hydrocarbons: an overview. Res. J. Chem. Environ. 16: 200–212.

Xu X., Liu W., Tian S., Wang W., Qi Q., Jiang P., Gao X., Li F., Li H., Yu H. 2018. Petroleum hydrocarbon-degrading bacteria for the remediation of oil pollution under aerobic conditions: A perspective analysis. Front. Microbiol. 9: 2885.

Zhang X., Li B., Wang H., Sui X., Ma X., Hong Q., Jian R. 2012. Rhizobium petrolearium sp. nov., isolated from oil contaminated soil. Int. J. Syst. Evol. Microbiol. 62: 1871–1876.

Downloads

Published

2023-11-04

How to Cite

Osadebe, A. U., & Chukwu, C. B. (2023). Degradation properties of Rhizobium petrolearium on different concentrations of crude oil and its derivative fuels. Environmental and Experimental Biology, 21(3), 83–92. https://doi.org/10.22364/eeb.21.10