Relationship between Maling bamboo (Yushania maling) invasion and decrease of plant species diversity in the Eastern Himalayan temperate forest
DOI:
https://doi.org/10.22364/eeb.21.09Keywords:
Eastern Himalayan forest, forest species composition, Maling bamboo over-dominance, seedling and sapling composition, Senchal wildlifeAbstract
Temperate forests of the Eastern Himalayan region are undergoing a noticeable transformation due to invasion and over-dominance by indigenous Yushania maling, Maling bamboo. In the present study, the impact of invasion of Maling bamboo on forest species composition in the Senchal Wildlife Sanctuary located in Darjeeling district of West Bengal, India was investigated, using a comparative approach. Ten plots each from Maling and non-Maling habitats at 10 sites were sampled using the nested quadrat method. Maling-infested plots showed lower species richness and diversity compared to non-Maling plots. The Maling-infested plots harboured 119 species compared to 165 species in non‑Maling plots. Across habitat and vegetation strata, diversity indices such as Shannon-Weiner, Menhinick, Simpson, and evenness consistently indicated lower diversity in Maling-dominated habitats accompanied by higher dominance scores. Significantly lower shrub and herb species diversity were observed in Maling plots, along with elevated shrub density and moderately lower tree density as compared to non‑Maling plots. The sapling species diversity and density were significantly lower in Maling plots, along with moderately reduced seedling density. The average Maling culm density was 1232.8 per 0.04 ha. These results underscore the adverse impact of Maling bamboo over-dominance on species composition of shrub, herbs, sapling and seedlings, and the density of trees, shrubs, saplings and seedlings within the temperate forests. Potential management strategies for the native species are discussed.
References
Badola H.K., Aitken S. 2010. Biological resources for poverty alleviation in Indian Himalaya. Biodiversity 11: 8–18. DOI: https://doi.org/10.1080/14888386.2010.9712659
Bai S.B., Conant R.T., Zhou G.M., Wang Y.X., Wang N., Li Y.H., Zhang K.Q. 2016. Effects of moso bamboo encroachment into native, broad-leaved forests on soil carbon and nitrogen pools. Sci. Rep. 6: 31480. DOI: https://doi.org/10.1038/srep31480
Bhat J.A., Kumar M., Negi A.K., Todaria N.P., Malik Z.A., Pala N.A., Shukla G. 2020. Species diversity of woody vegetation along altitudinal gradient of the Western Himalayas. Global Ecol. Conserv. 24: e01302. DOI: https://doi.org/10.1016/j.gecco.2020.e01302
Bhutia S. 2017. A situational analysis of water resources in darjeeling municipal town: issues and challenges. Int. J. Res. Geogr. 3: 52–60. DOI: https://doi.org/10.20431/2454-8685.0304007
Brooks T.M., Mittermeier R.A., da Fonseca G.A.B., Gerlach J., Hoffmann M., Lamoreux J.F., Mittermeier C.G., Pilgrim J.D., Rodrigues A.S.L. 2006. Global biodiversity conservation priorities. Science 313: 58–61. DOI: https://doi.org/10.1126/science.1127609
Buckley L.B., Roughgarden J. 2004. Biodiversity conservation: effects of changes in climate and land use. Nature 430: 2–20. DOI: https://doi.org/10.1038/nature02717
Cassi-Lit M.T., Punzalan D.B.T. 2015. Bamboo shoots as food sources in Philippines: status and constraints in production and utilization. Proceedings of 10th World Bamboo Congress 2015.
Champion H.G., Seth S.K. 1968. A Revised Survey of the Forest Types of India. Manager of Publications. Government of India, Delhi.
Chao C., Renvoize S.A. 1989. A revision of the species described under Arundinaria (Gramineae) in Southeast Asia and Africa. Kew Bull. 44: 349–367. DOI: https://doi.org/10.2307/4110809
Chaowana P. 2013. Bamboo: an alternative raw material for wood and wood-based composites. J. Mater. Sci. Res. 2: 90–102. DOI: https://doi.org/10.5539/jmsr.v2n2p90
Chen X., Chen X., Huang S., Fang D. 2022. Impact of Moso bamboo (Phyllostachys pubescens) invasion on species diversity and aboveground biomass of secondary coniferous and broad-leaved mixed forest. Front. Plant Sci. 13: 1001785. DOI: https://doi.org/10.3389/fpls.2022.1001785
Fedrique B., Santos Andrade P.E., Farfan-Rios W., Salinas N. 2021. Reduced tree density and basal area in Andean forests are associated with bamboo dominance. Forest Ecol. Manage. 480: 118648. DOI: https://doi.org/10.1016/j.foreco.2020.118648
Frith O. 2008. Editor of Mainstreaming Pro-poor Livelihood Opportunities with Bamboo. International Network for Bamboo and Rattan (INBAR), Beijing.
Gaira K.S., Pandey A., Sinha S., Badola H.K., Lepcha J., Dhyani P.P., Chettri N. 2022. Maling bamboo (Yushania maling) overdominance alters forest structure and composition in Khangchendzonga Landscape, Eastern Himalaya. Sci. Rep. 12: 4468. DOI: https://doi.org/10.1038/s41598-022-08483-8
Gansser A. 1964. Geology of the Himalayas. Interscience Publishers, London.
Gooden B., French K.O., Turner P. 2009. Invasion and management of a woody plant, Lantana camara L., alters vegetation diversity within wet sclerophyll forest in southeastern Australia. Forest Ecol. Manage. 257: 960–967. DOI: https://doi.org/10.1016/j.foreco.2008.10.040
Gratzer G., Rai P.B., Glatzel G.F. 1999. Influence of the bamboo Yushania microphylla on regeneration of Abies densa in central Bhutan. Can. J. Forest Res. 29: 1518–1527. DOI: https://doi.org/10.1139/x99-125
Grierson A.J.C, Long D.G. 1983-2001. Flora of Bhutan. Vol. 1 and 2. Royal Botanic Garden, Edinburgh.
Griscom B.M., Ashton P.M.S. 2003. Bamboo control of forest succession: Guadua sarcocarpa in Southeastern Peru. Forest Ecol. Manage. 175: 445–454. DOI: https://doi.org/10.1016/S0378-1127(02)00214-1
Gudade B.A., Chettri P., Gupta U., Deka T.N., Vijayan A.K. 2013. Traditional practices of large cardamom cultivation in Sikkim and Darjeeling. Life Sci. Leaflets 9: 62–68.
Gupta A., Kumar A. 2008. Potential of bamboo in sustainable development. Asia Pacific Business Rev. 4: 100e107. DOI: https://doi.org/10.1177/097324700800400312
Hara H. 1966. The Flora of Eastern Himalaya. Vol. 1. Tokyo University.
Hara H. 1971. The Flora of Eastern Himalaya. Vol. 2. Tokyo University.
Hammer O. 2023. PAST PAleontological STatistics 4.13 Natural History Museum, University of Oslo.
Huges K.A., Pescott O.L., Peyton J., Adriaens T., Cottier-Cook E.J., Key G., Rabitsch W., Tricario E., Barnes D.K.A., Baxter N., Belchier M., Blake D., Convey P., Dawson W., Frohlich D., Gardiner L.M., González-Moreno P., James R., Malumphy C., Martin S., Martinou A.F., Minchin D., Monaco A., Moore N., Morley S.A., Ross K., Shank;in J., Turvey K., Vaughan D., Vaux A.G.C., Werenkraut V., Winfield I.J., Roy H.E. 2020. Invasive non-native species likely to threaten biodiversity and ecosystems in the Antarctic Peninsula region. Global Change Biol. 26: 2702–2716. DOI: https://doi.org/10.1111/gcb.14938
Indian State of Forest Report. 2021. Forest Survey of India.
Isabell F., Gonzalez A., Loreau M., Cowles J., Diaz S., Hector A., Mace G.M., Wardle D.A., O’Cornor M.I., Duffy J.E., Turnbull L.A., Thomson P.L., Larigauderie A. 2017. Linking the influence of and dependence of people on biodiversity across scales. Nature 546: 65–72. DOI: https://doi.org/10.1038/nature22899
Kudo G., Kawai Y., Amagai Y., B., Winkler D.E. 2011. Degradation and recovery of an alpine plant community: an experimental removal of an encroaching dwarf bamboo. Alpine Bot. 127: 75–83. DOI: https://doi.org/10.1007/s00035-016-0178-2
Kumar B. 2009. Ringal (a dwarf bamboo): resource use pattern. Rep. Opin. 1: 1–5.
Kumar P.S., Kumari K.U., Devi M.P., Choudhary V.K., Sangeetha A. 2016. Bamboo shoot as a source of nutraceuticals and bioactive compounds: a review. Ind. J. Nat. Proc. Res. 8: 32–46.
Larpkern P., Moe S.R., Totland O. 2011. Bamboo dominance reduces tree regeneration in a disturbed tropical forest. Oecologia 165: 161–168. DOI: https://doi.org/10.1007/s00442-010-1707-0
Lima R.A.F., Rother D.C., Muler A.E., Lepsch I.F., Rodrigues R.R. 2012. Bamboo overabundance alters forest structure and dynamics in the Atlantic Forest hotspot. Biol. Conserv. 147: 32–39. DOI: https://doi.org/10.1016/j.biocon.2012.01.015
Linders T.E.W., Schaffner U., Eschen R., Abebe A., Choge S.K., Nigatu L., Mbaabu P.R., Shiferaw H., Allan E. 2019. Direct and indirect effects of invasive species: Biodiversity loss is a major mechanism by which an invasive tree affects ecosystem functioning. J. Ecol. 107: 2660–2672. DOI: https://doi.org/10.1111/1365-2745.13268
Mack R.N., Simberloff D., Lonsdale W.M., Evans H., Clout M., Bazzaz F.A. 2000. Biotic invasions: Causes, epidemiology, global consequences, and control. Ecol. Applic. 10: 689–710. DOI: https://doi.org/10.1890/1051-0761(2000)010[0689:BICEGC]2.0.CO;2
Mohammad H., Mohammad I., Sharker N. 2015. Multipurpose use of bamboo plants: a review. Int. Res. J. Biol. Sci. 4: 57–60.
Montii L., Campanello P., Gatti M.G., Blundo C., Austin A., Sala O., Goldstein G. 2011. Understory bamboo flowering provides a very narrow light window of opportunity for canopy-tree recruitment in neotropical forest of Misiones, Argentina. Environ. Sci. 262: 1360–1369. DOI: https://doi.org/10.1016/j.foreco.2011.06.029
Nakashizuka T. 1987. Regeneration dynamics of beech forests in Japan. Vegetatio 69: 169–175. DOI: https://doi.org/10.1007/978-94-009-4061-1_17
Nath A., Sinha A., Lahkar B.P., Brahma N. 2019. In search of aliens: factors influencing the distribution of Chromolaena odorata L. and Mikania micrantha Kunth in the Terai grasslands of Manas National Park, India. Ecol. Eng. 131: 16–26. DOI: https://doi.org/10.1016/j.ecoleng.2019.02.012
Neena P., Shiju M.V., Joshi P.K. 2013. A framework for management of Lantana camara in India. Proc. Int. Acad. Ecol. Environ. Sci. 3: 306–323.
Negi G.C., Sharma S., Vishvakarma S.C.R., Samant S.S., Maikhuri R.K., Prasad R.C., Palni L.M.S. 2019. Ecology and use of Lantana camara in India. Bot. Rev. 85: 109–130. DOI: https://doi.org/10.1007/s12229-019-09209-8
Nongdam P., Tikendra L. 2014. Nutritional facts of bamboo shoots and their uses as important traditional foods in Northeast India. Int. Scholary Res. Notices 2014: 679073. DOI: https://doi.org/10.1155/2014/679073
Okutomi K., Shinoda S., Fukuda H. 1996. Causal analysis of the invasion of broad-leaved forest by bamboo in Japan. J. Veget. Sci. 7: 723–728. DOI: https://doi.org/10.2307/3236383
Phukan M. 2018. A study on cane and bamboo handicraft industry in North-East India. Res. J. Human Soc. Sci. 9: 901–904. DOI: https://doi.org/10.5958/2321-5828.2018.00151.1
Poonia P., Upadhya V., Mukaiah H., Manjunatha G.O., Kumari S. 2021. Bamboo: a substitute for wood and wood-based industries. NESA E-version 8: 11–12.
Pradhan S., Khan J.A., Saha G.K. 2001. Ecology of the Red Panda, Ailurus fulgens in the Singhalila national park, Darjeeling, India. Biol. Conserv. 98: 11–18. DOI: https://doi.org/10.1016/S0006-3207(00)00079-3
Rai B., Rai, U. 2017. Assessment of physio-chemical characteristics of major source of drinking water in Darjeeling. In: Anirudra Gurung (Ed.) Proceedings: Climate Change Impacts and Assessment. Bishen Singh Mahendra Pal Singh, Dehra Dun, pp. 153–164.
Rai U. 2006. Plant Biodiversity Characterization using Remote Sensing Techniques in Darjiling Hills. PhD. Thesis, University of North Bengal.
Rai P.K., Singh J.S. 2020. Invasive alien plant species: Their impact on environment, ecosystem services and human health. Ecol. Indic. 111: 106020. DOI: https://doi.org/10.1016/j.ecolind.2019.106020
Razal R.A., Dolom P.C., Palacpac A.B., Villanueva M.M.B., Camacho S.C., Alipon M.B, Bantayan R.B., Stanley C.M. 2012. Mainstreaming Engineered-Bamboo Products for Construction and Furniture. Philippines Council of Agriculture, Aquatic Natural Resources Research and Development. doi: 10.13140/RG.2.1.3490.9200.
Roy A., Bhattacharya S., Ramprakash M., Senthil A.K. 2016. Modeling critical patches of connectivity for invasive Maling bamboo (Yushania maling) in Darjeeling Himalayas using graph theoretic approach. Ecol. Model. 329: 77–85. DOI: https://doi.org/10.1016/j.ecolmodel.2016.02.016
Roy P.S., Singh S., Dutt C.B.S., Chockalingam J., Jadhav R.N., Ravan S.A., Diwakar P.G., Tomar S., Tiwari A.K., Ranganath B.K., Hedge V.S. 2008. Biodiversity Characterisation at Landscape Level Using Remote Sensing & Geographic Information System. Biodiversity Project Manual. National Remote Sensing Centre, Indian Space Research Organisation, Department of Space, Government of India, Balanagar, Hyderabad..
Saha S., Rajwar G.S., Kumar M., Upadhaya K. 2016. Litter production, decomposition and nutrient release of woody tree species in Dhanaulti region of temperate forest in Garhwal Himalaya. Eurasian J. Forest Sci. 4: 17–30. DOI: https://doi.org/10.31195/ejejfs.258622
Sarmah A., Thomas S., Goswami M., Haridashan K., Borthakur S. K. 2000. Rattan and bamboo flora of North-East India in a conservation perspective. In: Arunachalan A., Khan M. L. (Eds.) Sustainable Management of Forests. International Book Distributors, pp. 37–45.
Sebastian K., Lawrence A., Trujillo D. 2016. Structural use of bamboo: Part I: Introduction to bamboo. Struct. Eng. 94: 40–43. DOI: https://doi.org/10.56330/PNSC8891
Shackelton R.T., Witt A.B.R., Nunda W., Richardson D.M. 2017. Chromolaena odorata (Siam weed) in Eastern Africa: Distribution and socio-ecological impacts. Biol. Invas. 19: 1285–1298. DOI: https://doi.org/10.1007/s10530-016-1338-4
Sharma C.M., Mishra A.K., Tiwari O.P., Krishan R., Rana Y.S. 2017. Effect of altitudinal gradients on forest structure and composition on ridge tops in Garhwal Himalaya. Energy Ecol. Environ. 2: 404–417. DOI: https://doi.org/10.1007/s40974-017-0067-6
Sharma G., Pratap U., Sharma D.P. 2019. Pollination biology of large cardamom (Amomum subulatum Roxb.) with special emphasis on honey bee (Apis spp.) and bumble bee (Bombus spp.) pollinator. Tropical Ecol. 60: 507–517. DOI: https://doi.org/10.1007/s42965-020-00056-y
Sharma H.P., Swenson J.E., Belant J. 2014. Seasonal food habits of the red panda (Ailurus fulgens) in Rara National Park, Nepal. Hystrix 25: 47–50.
Sharma M.L., Chongtham S. 2015. Bamboo diversity of India: an update. 10th World Bamboo Congress, Korea 2015.
Sharma R., Wahono J., Baral H. 2018. Bamboo as an alternative bioenergy crop and powerful ally for land restoration in Indonesia. Sustainability 10: 4367. DOI: https://doi.org/10.3390/su10124367
Song Q., Lu H., Lui J., Yang J., Yang G., Yang Q. 2017. Accessing the impacts of bamboo expansion on NPP and N cycling in evergreen broadleaved forest in subtropical China. Sci. Rep. 7: 40383. DOI: https://doi.org/10.1038/srep40383
Srivastava V., Griess V.C., Padalia, H. 2018. Mapping invasion potential using ensemble modelling. A case study on Yushania maling in the Darjeeling Himalayas. Ecol. Model. 385: 35–44. DOI: https://doi.org/10.1016/j.ecolmodel.2018.07.001
Sundaram B., Krishnan S., Hiremath A.J., Joseph G. 2012. Ecology and Impacts of the invasive species, Lantana camara, in a socio-ecological system in south India: perspectives from local knowledge. Human Ecol. 40: 931–942. DOI: https://doi.org/10.1007/s10745-012-9532-1
Tamang D.K., Dhakal D., Gurung S., Sharma N.P., Shrestha D.G. 2013. Bamboo diversity, distribution pattern and its uses in Sikkim (India) Himalaya. Int. J. Sci. Res. Pub. 3: 1–6.
Tambe S., Patnaik S., Upadhyay A.P., Edgaonkar A., Singhal R., Bisaria J., Srivastava P., Hiralal M.H., Dahake K., Gawande A., Surkar P.K. 2020. Research trends: evidence-based policy for bamboo development in India: from “supply push” to “demand pull”. Forest Policy Econ. 116: 102187. DOI: https://doi.org/10.1016/j.forpol.2020.102187
Tao J.P., Shi X.P., Wang Y.J. 2012. Effects of different bamboo densities on understory species diversity and trees regeneration in an Abies faxoniana forest, Southwest China. Sci. Res. Essays 7: 660–668. DOI: https://doi.org/10.5897/SRE11.1100
Tarafdar H.K., Roy K., Rai B. 2018. Large cardamom production scenario in mountainous region of West Bengal: constraints, issues and strategies. Asian J. Soil Sci. 13: 153–156. DOI: https://doi.org/10.15740/HAS/AJSS/13.2/153-156
Tomimatsu H., Yamagishi H., Tanaka I., Sato M., Kondo R., Konno Y. 2011. Consequences of forest fragmentation in an understory plant community: Extensive range expansion of native dwarf bamboo. Plant Species Biol. 26: 3–12. DOI: https://doi.org/10.1111/j.1442-1984.2010.00310.x
Tylor A.H., Jinyan H., Zhou S. 2004. Canopy tree development and undergrowth bamboo dynamics in old-growth Abies-Betula forests in southwestern China: A 12-year study. Forest Ecol. Manage. 200: 347–360. DOI: https://doi.org/10.1016/j.foreco.2004.07.007
Veenita, Tamang B., Sukhla G., Chakravarty S. 2023. The urge of conserving tradition from climate change: a case study of Darjeeling Himalayan large cardamom-based traditional agroforestry farming system. Nature-Based Solut. 3 2023: 1000664. DOI: https://doi.org/10.1016/j.nbsj.2023.100064
Wang W., Franklin S.B., Ren Y., Ouellette J.R. 2006. Growth of bamboo Fargesia qinlingensis and regeneration of trees in a mixed hardwood-conifer forest in the Qinling Mountains, China. Forest Ecol. Manage. 234: 107–115. DOI: https://doi.org/10.1016/j.foreco.2006.06.028
Xu Q., Chenfei L., Chen J.H., Li Y.C., Qin H., Fuhrmann J.J. 2020. Rapid bamboo invasion (expansion) and its effects on biodiversity and soil processes. Global Ecol. Conserv. 21: e00787. DOI: https://doi.org/10.1016/j.gecco.2019.e00787
Zhang W.J., Chen B. 2011. Environment patterns and influential factors of biological invasions: a worldwide survey. Proc. Int. Acad. Ecol. Environ. Sci. 1: 1–14.
Downloads
Published
Issue
Section
License
Copyright (c) 2023 University of LatviaThis is an open access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles in this journal without asking prior permission from the publisher or the author. This is in accordance with the BOAI definition of open access. Author(s) of the published papers retain copyright, the papers are made freely available for non-commercial purposes, allowing download, reuse, reprint and distribution of the material as long as the original authors and the source are cited. This license is equivalent to the CC BY-NC-ND.