Expression of highly conserved developmental phase change regulating miR156 and miR172 microRNAs in silver birch using real-time PCR and high-throughput sequencing methodologies




in vitro propagation, juvenility, miR156, miR172, molecular markers


Silver birch (Betula pendula Roth) is the most significant deciduous tree species in Latvia. Efficient vegetative reproduction methods are crucial for shortening breeding cycles. In many woody tree species, success of vegetative propagation sharply decreases as individuals mature. Development of molecular genetic markers related to phase change has the potential to increase the efficiency of vegetative reproduction methods. Studies in annual model plant species have identified evolutionary highly conserved miRNAs that are involved in phase change – miR156 and miR172. This study compared expression levels of these miRNA families using two approaches – real-time PCR (RT‑PCR) and high-throughput sequencing, in silver birch in vitro shoot samples. High expression of miR156 in juvenile samples was identified by both methods, but increased expression of miR172 was only observed by RT‑PCR. Further studies in long-lived perennial species are needed to fully elucidate the miRNAs involved in developmental phase transition processes.


Ahsan M.U., Hayward A., Alam M., Bandaralage J.H., Topp B., Beveridge C.A., Mitter N. 2019a. Scion control of miRNA abundance and tree maturity in grafted avocado. BMC Plant Biol. 19: 382.

Ahsan M.U., Hayward A., Irihimovitch V., Fletcher S., Tanurdzic M., Pocock A., Beveridge C.A., Mitter N. 2019b. Juvenility and vegetative phase transition in tropical/subtropical tree crops. Front. Plant Sci. 10: 729.

Bielewicz D., Dolata J., Zielezinski A., Alaba S., Szarzynska B., Szczesniak M.W., Jarmolowski A., Szweykowska-Kulinska Z.& Karlowski W.M. 2012. mirEX: a platform for comparative exploration of plant pri-miRNA expression data. Nucl. Acids Res. 40: D191–D197.

Carrington J.C., Ambros V. 2003. Role of microRNAs in plant and animal development. Science 301: 336–338.

Dubois H., Verkasalo E., Claessens H. 2020. Potential of birch (Betula pendula Roth and B. pubescens Ehrh.) for forestry and forest-based industry sector within the changing climatic and socio-economic context of Western Europe. Forests 11: 336.

Ewald D., Naujoks G., Welander M., Zhu L.H., Hagqvist R., Salonen M., Harrison A. 2001. Micropropagation and birch field trials. In: Welander M., Zhu L.H. (Eds.) Proceedings of the Workshop on High Quality Birch: Clonal Propagation and Wood Properties. Ronneby, Sweden, 27 – 28 August 2001, pp. 37–46.

Feng S., Xu Y., Guo C., Zheng J., Zhou B., Zhang Y., Ding Y., Zhang L., Zhu Z., Wang H., Wu G. 2016. Modulation of miR156 to identify traits associated with vegetative phase change in tobacco (Nicotiana tabacum). J. Exp. Bot. 67: 1493–1504.

Gailis A., Zeltiņš P., Purviņš A., Augustovs J., Vīndedzis V., Zariņa I., Jansons Ā. 2020. Genetic parameters of growth and quality traits in open-pollinated silver birch progeny tests. Silva Fenn. 54: 10220.

George E.F. 2008. Plant tissue culture procedure – background. In: George E.F., Hall M.A., De Klerk G.-J. (Eds.) Plant Propagation by Tissue Culture. Vol. 1. The Background. 3rd Ed. Springer, Dordrecht, pp. 1–28.

Jia X. L., Chen Y.K., Xu X.Z., Shen F., Zheng Q.B., Du Z., Wang Y., Wu T., Xu X.F., Han Z.H., Zhang X.Z. 2017. miR156 switches on vegetative phase change under the regulation of redox signals in apple seedlings. Sci. Rep. 7: 14223.

Kozomara A., Griffiths-Jones S. 2014. miRBase: annotating high confidence microRNAs using deep sequencing data. Nucl. Acids Res. 42: D68–D73.

Krivmane B., Girgžde E., Samsone I., Ruņģis D. 2022. Expression of juvenility related microRNAs and target genes during micropropagation of silver birch (Betula pendula Roth.). Plant Cell Tissue Organ Cult.

Krivmane B., Šņepste I., Škipars V., Yakovlev I., Fossdal C. G., Vivian-Smith A., Ruņgis D. 2020. Identification and in silico characterization of novel and conserved microRNAs in methyl jasmonate-stimulated Scots pine (Pinus sylvestris L.) needles. Forests 11: 384.

Li A., Mao L. 2007. Evolution of plant microRNA gene families. Cell Res. 17: 212–218.

McCown, B. H. 2000. Special symposium: In vitro plant recalcitrance recalcitrance of woody and herbaceous perennial plants: Dealing with genetic predeterminism. In Vitro Cell. Dev. Biol. Plant 36: 149–154.

Neutelings G., Fénart S., Lucau-Danila A., Hawkins S. 2012. Identification and characterization of miRNAs and their potential targets in flax. J. Plant Physiol. 169: 1754–1766.

O’Dowd N. 2004. The improvement of Irish birch. Phase 1: Selection of individuals and populations. COFORD, Dublin.

Ruonala R., Rinne P. L., Baghour M., Moritz T., Tuominen H., Kangasjärvi J. 2006. Transitions in the functioning of the shoot apical meristem in birch (Betula pendula) involve ethylene. Plant J. 46: 628–640.

Sánchez M.C., Ballester A., Vieitez A.M. 1997. Reinvigoration treatments for the micropropagation of mature chestnut trees. Ann. Sci. Forest. 54: 359–370.

Wang J.W., Park M.Y., Wang L.J., Koo Y., Chen X.Y., Weigel D., Poethig R S. 2011. MiRNA Control of vegetative phase change in trees. PLOS Genet. 7: e1002012.

Welander M. 1993. Micropropagation of birch. In: Ahuja M.R. (Ed.) Micropropagation of Woody Plants. Springer, Dordrecht, pp. 223–246.

Wu G., Park M.Y., Conway S.R., Wang J.W., Weigel D., Poethig R. S. 2009. The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis. Cell 138: 750–759.

Wu G., Poethig R.S. 2006. Temporal regulation of shoot development in Arabidopsis thaliana by miR156 and its target SPL3. Development 133: 3539–3547.

Xing L., Zhang D., Li Y., Zhao C., Zhang S., Shen Y., An N., Han M. 2014. Genome-wide identification of vegetative phase transition-associated microRNAs and target predictions using degradome sequencing in Malus hupehensis. BMC Genom. 15: 1125.

Xu Y., Guo C., Zhou B., Li C., Wang H., Zheng B., Ding H., Zhu Z., Peragine A., Cui Y., Poethig S., Wu G. 2016. Regulation of vegetative phase change by SWI2/SNF2 chromatin remodeling ATPase BRAHMA. Plant Physiol. 172: 2416–2428.

Zhai J., Zhao Y., Simon S.A., Huang S., Petsch K., Arikit S., Pillay M., Ji L., Xie M., Cao X., Yu B., Timmermans M., Yang B., Chen X., Meyers B.C. 2013. Plant microRNAs display differential 3’ truncation and tailing modifications that are ARGONAUTE1 dependent and conserved across species. Plant Cell 25: 2417–2428.

Zhang L., Hu Y.B., Wang H.S., Feng S.J., Zhang Y.T. 2015. Involvement of miR156 in the regulation of vegetative phase change in plants. J. Amer. Soc. Hort. Sci. 140: 387–395.

Žiarovská J., Labajová M., Ražná K., Bežo M., Štefúnová V., Shevtsova T., Garkava K., Brindza J. 2013. Changes in expression of BetV1 allergen of silver birch pollen in urbanized area of Ukraine. J. Environ. Sci. Health A 48: 1479–1484.




How to Cite

Krivmane, B., Samsone, I., & Ruņģis, D. E. (2023). Expression of highly conserved developmental phase change regulating miR156 and miR172 microRNAs in silver birch using real-time PCR and high-throughput sequencing methodologies. Environmental and Experimental Biology, 20(4), 225–229.