Expression of highly conserved developmental phase change regulating miR156 and miR172 microRNAs in silver birch using real-time PCR and high-throughput sequencing methodologies
DOI:
https://doi.org/10.22364/eeb.20.21Keywords:
in vitro propagation, juvenility, miR156, miR172, molecular markersAbstract
Silver birch (Betula pendula Roth) is the most significant deciduous tree species in Latvia. Efficient vegetative reproduction methods are crucial for shortening breeding cycles. In many woody tree species, success of vegetative propagation sharply decreases as individuals mature. Development of molecular genetic markers related to phase change has the potential to increase the efficiency of vegetative reproduction methods. Studies in annual model plant species have identified evolutionary highly conserved miRNAs that are involved in phase change – miR156 and miR172. This study compared expression levels of these miRNA families using two approaches – real-time PCR (RT‑PCR) and high-throughput sequencing, in silver birch in vitro shoot samples. High expression of miR156 in juvenile samples was identified by both methods, but increased expression of miR172 was only observed by RT‑PCR. Further studies in long-lived perennial species are needed to fully elucidate the miRNAs involved in developmental phase transition processes.
References
Ahsan M.U., Hayward A., Alam M., Bandaralage J.H., Topp B., Beveridge C.A., Mitter N. 2019a. Scion control of miRNA abundance and tree maturity in grafted avocado. BMC Plant Biol. 19: 382. DOI: https://doi.org/10.1186/s12870-019-1994-5
Ahsan M.U., Hayward A., Irihimovitch V., Fletcher S., Tanurdzic M., Pocock A., Beveridge C.A., Mitter N. 2019b. Juvenility and vegetative phase transition in tropical/subtropical tree crops. Front. Plant Sci. 10: 729. DOI: https://doi.org/10.3389/fpls.2019.00729
Bielewicz D., Dolata J., Zielezinski A., Alaba S., Szarzynska B., Szczesniak M.W., Jarmolowski A., Szweykowska-Kulinska Z.& Karlowski W.M. 2012. mirEX: a platform for comparative exploration of plant pri-miRNA expression data. Nucl. Acids Res. 40: D191–D197. DOI: https://doi.org/10.1093/nar/gkr878
Carrington J.C., Ambros V. 2003. Role of microRNAs in plant and animal development. Science 301: 336–338. DOI: https://doi.org/10.1126/science.1085242
Dubois H., Verkasalo E., Claessens H. 2020. Potential of birch (Betula pendula Roth and B. pubescens Ehrh.) for forestry and forest-based industry sector within the changing climatic and socio-economic context of Western Europe. Forests 11: 336. DOI: https://doi.org/10.3390/f11030336
Ewald D., Naujoks G., Welander M., Zhu L.H., Hagqvist R., Salonen M., Harrison A. 2001. Micropropagation and birch field trials. In: Welander M., Zhu L.H. (Eds.) Proceedings of the Workshop on High Quality Birch: Clonal Propagation and Wood Properties. Ronneby, Sweden, 27 – 28 August 2001, pp. 37–46.
Feng S., Xu Y., Guo C., Zheng J., Zhou B., Zhang Y., Ding Y., Zhang L., Zhu Z., Wang H., Wu G. 2016. Modulation of miR156 to identify traits associated with vegetative phase change in tobacco (Nicotiana tabacum). J. Exp. Bot. 67: 1493–1504. DOI: https://doi.org/10.1093/jxb/erv551
Gailis A., Zeltiņš P., Purviņš A., Augustovs J., Vīndedzis V., Zariņa I., Jansons Ā. 2020. Genetic parameters of growth and quality traits in open-pollinated silver birch progeny tests. Silva Fenn. 54: 10220. DOI: https://doi.org/10.14214/sf.10220
George E.F. 2008. Plant tissue culture procedure – background. In: George E.F., Hall M.A., De Klerk G.-J. (Eds.) Plant Propagation by Tissue Culture. Vol. 1. The Background. 3rd Ed. Springer, Dordrecht, pp. 1–28. DOI: https://doi.org/10.1007/978-1-4020-5005-3_1
Jia X. L., Chen Y.K., Xu X.Z., Shen F., Zheng Q.B., Du Z., Wang Y., Wu T., Xu X.F., Han Z.H., Zhang X.Z. 2017. miR156 switches on vegetative phase change under the regulation of redox signals in apple seedlings. Sci. Rep. 7: 14223. DOI: https://doi.org/10.1038/s41598-017-14671-8
Kozomara A., Griffiths-Jones S. 2014. miRBase: annotating high confidence microRNAs using deep sequencing data. Nucl. Acids Res. 42: D68–D73. DOI: https://doi.org/10.1093/nar/gkt1181
Krivmane B., Girgžde E., Samsone I., Ruņģis D. 2022. Expression of juvenility related microRNAs and target genes during micropropagation of silver birch (Betula pendula Roth.). Plant Cell Tissue Organ Cult. https://doi.org/10.1007/s11240-022-02419-w. DOI: https://doi.org/10.21203/rs.3.rs-1757691/v1
Krivmane B., Šņepste I., Škipars V., Yakovlev I., Fossdal C. G., Vivian-Smith A., Ruņgis D. 2020. Identification and in silico characterization of novel and conserved microRNAs in methyl jasmonate-stimulated Scots pine (Pinus sylvestris L.) needles. Forests 11: 384. DOI: https://doi.org/10.3390/f11040384
Li A., Mao L. 2007. Evolution of plant microRNA gene families. Cell Res. 17: 212–218. DOI: https://doi.org/10.1038/sj.cr.7310113
McCown, B. H. 2000. Special symposium: In vitro plant recalcitrance recalcitrance of woody and herbaceous perennial plants: Dealing with genetic predeterminism. In Vitro Cell. Dev. Biol. Plant 36: 149–154. DOI: https://doi.org/10.1007/s11627-000-0030-6
Neutelings G., Fénart S., Lucau-Danila A., Hawkins S. 2012. Identification and characterization of miRNAs and their potential targets in flax. J. Plant Physiol. 169: 1754–1766. DOI: https://doi.org/10.1016/j.jplph.2012.06.011
O’Dowd N. 2004. The improvement of Irish birch. Phase 1: Selection of individuals and populations. COFORD, Dublin.
Ruonala R., Rinne P. L., Baghour M., Moritz T., Tuominen H., Kangasjärvi J. 2006. Transitions in the functioning of the shoot apical meristem in birch (Betula pendula) involve ethylene. Plant J. 46: 628–640. DOI: https://doi.org/10.1111/j.1365-313X.2006.02722.x
Sánchez M.C., Ballester A., Vieitez A.M. 1997. Reinvigoration treatments for the micropropagation of mature chestnut trees. Ann. Sci. Forest. 54: 359–370. DOI: https://doi.org/10.1051/forest:19970404
Wang J.W., Park M.Y., Wang L.J., Koo Y., Chen X.Y., Weigel D., Poethig R S. 2011. MiRNA Control of vegetative phase change in trees. PLOS Genet. 7: e1002012. DOI: https://doi.org/10.1371/journal.pgen.1002012
Welander M. 1993. Micropropagation of birch. In: Ahuja M.R. (Ed.) Micropropagation of Woody Plants. Springer, Dordrecht, pp. 223–246. DOI: https://doi.org/10.1007/978-94-015-8116-5_14
Wu G., Park M.Y., Conway S.R., Wang J.W., Weigel D., Poethig R. S. 2009. The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis. Cell 138: 750–759. DOI: https://doi.org/10.1016/j.cell.2009.06.031
Wu G., Poethig R.S. 2006. Temporal regulation of shoot development in Arabidopsis thaliana by miR156 and its target SPL3. Development 133: 3539–3547. DOI: https://doi.org/10.1242/dev.02521
Xing L., Zhang D., Li Y., Zhao C., Zhang S., Shen Y., An N., Han M. 2014. Genome-wide identification of vegetative phase transition-associated microRNAs and target predictions using degradome sequencing in Malus hupehensis. BMC Genom. 15: 1125. DOI: https://doi.org/10.1186/1471-2164-15-1125
Xu Y., Guo C., Zhou B., Li C., Wang H., Zheng B., Ding H., Zhu Z., Peragine A., Cui Y., Poethig S., Wu G. 2016. Regulation of vegetative phase change by SWI2/SNF2 chromatin remodeling ATPase BRAHMA. Plant Physiol. 172: 2416–2428. DOI: https://doi.org/10.1104/pp.16.01588
Zhai J., Zhao Y., Simon S.A., Huang S., Petsch K., Arikit S., Pillay M., Ji L., Xie M., Cao X., Yu B., Timmermans M., Yang B., Chen X., Meyers B.C. 2013. Plant microRNAs display differential 3’ truncation and tailing modifications that are ARGONAUTE1 dependent and conserved across species. Plant Cell 25: 2417–2428. DOI: https://doi.org/10.1105/tpc.113.114603
Zhang L., Hu Y.B., Wang H.S., Feng S.J., Zhang Y.T. 2015. Involvement of miR156 in the regulation of vegetative phase change in plants. J. Amer. Soc. Hort. Sci. 140: 387–395. DOI: https://doi.org/10.21273/JASHS.140.5.387
Žiarovská J., Labajová M., Ražná K., Bežo M., Štefúnová V., Shevtsova T., Garkava K., Brindza J. 2013. Changes in expression of BetV1 allergen of silver birch pollen in urbanized area of Ukraine. J. Environ. Sci. Health A 48: 1479–1484. DOI: https://doi.org/10.1080/10934529.2013.796788
Downloads
Published
Issue
Section
License
Copyright (c) 2022 University of LatviaThis is an open access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles in this journal without asking prior permission from the publisher or the author. This is in accordance with the BOAI definition of open access. Author(s) of the published papers retain copyright, the papers are made freely available for non-commercial purposes, allowing download, reuse, reprint and distribution of the material as long as the original authors and the source are cited. This license is equivalent to the CC BY-NC-ND.