Impact of habitat fragmentation on genetic structure of Capparis spinosa populations revealed by ISSR markers

Authors

  • Houshang Nosrati Department of Plant, Cell and Molecular Biology, Faculty of Natural Sciences, University of Tabriz https://orcid.org/0000-0003-2023-5977
  • Hanife Akbarian Department of Plant, Cell and Molecular Biology, Faculty of Natural Sciences, University of Tabriz

DOI:

https://doi.org/10.22364/eeb.20.20

Keywords:

Capparis spinosa, habitat fragmentation, ISSR markers, population genetic variation, RAPD markers

Abstract

The results from empirical studies on the impact of habitat fragmentation on genetic variation of populations are controversial, ranging from negative to positive effects. This contradiction has been attributed to either species characteristics (e.g. plant life history) or environmental components (e.g. the scale of habitat fragmentation). To examine the role of DNA marker types on these effects, we carried out a comparative study of seven populations of Capparis spinosa L. (caper, Capparaceae) using ISSR markers and compared these results with those obtained previously using RAPD markers. Although both ISSR and RAPD markers showed high consistency and indicated that genetic variation in populations was not correlated with either geographical distance (P ≥ 0.47, P ≥ 0.83; for ISSR and RAPD, respectively) or altitude (P ≥ 0.535, P ≥ 0.419; for ISSR and RAPD respectively), the levels of variation were related to population size. ISSR analysis showed that genetic variation did not significantly differ between small and large populations (P ≥ 0.4149), while RAPD analysis indicated significant effect of population size on this variation (P ≤ 0.002). This may suggest that, in addition to species and environmental components, types of DNA markers used for assessing population genetic variations affect results on the impact of fragmentation on genetic variation.

References

Ahmadi M., Saeidi H., Mirtaxzadiani M., 2020. Species delimitation in Capparis spinosa group (Capparaceae) in Iran: Multivariate morphometric analysis and ISSR markers. Phytotaxa 456: 11–15.

Aguilar R., Quesada M., Ashworth L., Herrerias-Diego Y., Lobo J. 2008. Genetic consequences of habitat fragmentation in plant populations: susceptible signals in plant traits and methodological approaches. Mol. Ecol. 17: 5177–5188.

Bhoyar M.S., Mishra G.P., Naik P.K., Murkute A.A., Srivastava R.B. 2012. Genetic variability studies among natural populations of Capparis spinosa from cold arid desert of Trans-Himalayas using DNA markers. Natl. Acad. Sci. Lett. 35: 505–515.

Browne L., Karubian J. 2018. Habitat loss and fragmentation reduce effective gene flow by disrupting seed dispersal in a neotropical palm. Mol. Ecol. 27: 3055–3069.

Chung M.Y., Son S., Herrando-Moraira S, Tang C.Q., Maki M., Kim Y.D., López-Pujol J., Hamrick J.L., Chung M.G. 2020. Incorporating differences between genetic diversity of trees and herbaceous plants in conservation strategies. Conserv. Biol. 34: 1142–1151.

Chybicki I.J., Oleksa A. 2018. Seed and pollen gene dispersal in Taxus baccata, a dioecious conifer in the face of strong population fragmentation. Ann. Bot. 122: 409–421.

Duminil J., Brown R.P., Ewédjè E.-E.B., Mardulyn P., Doucet J.L., Hardy O.J. 2013. Large-scale pattern of genetic differentiation within African rainforest trees: insights on the roles of ecological gradients and past climate changes on the evolution of Erythrophleum spp. (Fabaceae). BMC Evol. Biol. 13: 195.

El-Shahaby O., El-Zayat M., El-Fattah A., El-Hefny M. 2019. Evaluation of the biological activity of Capparis spinosa var. aegyptiaca essential oils and fatty constituents as anticipated antioxidant and antimicrobial agents. Progr. Chem. Biochem. Res. 2: 211–221.

Fahrig L. 2017. Ecological responses to habitat fragmentation per se. Annu. Rev. Ecol. Evol. Syst. 48: 1–23.

Fahrig L., Arroyo-Rodríguezb V., Bennett J.R. 2019. Is habitat fragmentation bad for biodiversity? Biol. Conserv. 230: 179–186.

Fici S. 2014. A taxonomic revision of the Capparis spinosa group (Capparaceae) from the Mediterranean to Central Asia. Phytotaxa 174: 1–24.

Fletcher R.J., Didham R.K., Banks-Leite C., Barlow J., Ewers R.M., Rosindell J., Hol R.D., Gonzalez A., Pardini R., Damschen E.I., Melo F.P.L., Ries L., Prevedello J.M., Tscharntke T., Laurance W.F., Lovejoy T., Haddad N.M. 2018. Is habitat fragmentation good for biodiversity? Biol. Conserv. 226: 9–15.

González A.V., Gómez-Silva V., Ramírez M.J., Fontúrbe F.E. 2020. Meta-analysis of the differential effects of habitat fragmentation and degradation on plant genetic diversity. Conserv. Biol. 34: 711–720.

Gristina A.S., Fici S., Siragusa M., Fontana I., Garfì G., Carimia F. 2014. Hybridization in Capparis spinosa L.: Molecular and morphological evidence from a Mediterranean island complex. Flora 209: 733–741.

Hamrick J.L. 2004. Response of forest trees to global environmental changes. Forest Ecol. Manage. 197: 323–335.

Hedge I.C., Lamond J. 1970. Flora Iranica, 68. Capparidaceae. In: Rechinger K.H. (Ed.) Flora des Iranischen Hochlandes und der Umranhmenden Gebirge. Akademie Druck- und Verlagsantalt, Graz, pp. 3–8.

Heinken T., Weber E. 2013. Consequences of habitat fragmentation for plant species: do we know enough? Perspect. Plant Ecol. Syst. 15: 205–216.

Hermansen T., Minchinton T., Ayre D. 2017. Habitat fragmentation leads to reduced pollinator visitation, fruit production and recruitment in urban mangrove forests. Oecologia 185: 221–231.

Honnay O., Jacquemyn H. 2007. Genetic response to habitat fragmentation in common and rare plant species. Conserv. Biol. 21: 824–831.

Jacquemyn H., De Meester L., Jongejans E., Honnay O. 2012. Evolutionary changes in plant reproductive traits following habitat fragmentation and their consequences for population fitness. J. Ecol. 100: 76–87.

Leimu R., Mutikainen P., Koricheva J., Fischer M. 2006. How general are positive relationships between plant population size, fitness and genetic variation? J. Ecol. 94: 942–952.

Leimu R., Vergeer P., Angeloni F., Ouborg N.J. 2010. Habitat fragmentation, climate change, and inbreeding in plants. Ann. NY Acad. Sci. 1195: 84–98.

Leonardi S., Piovani P., Scalfi M., Piotti A., Giannini R., Menozzi P. 2012. Effect of habitat fragmentation on the genetic diversity and structure of peripheral populations of beech in central Italy. J. Hered. 1033: 408–417.

Matesanz S., Rubio Teso M.L., García-Fernández A., Escudero A. 2017. Habitat Fragmentation differentially affects genetic variation, phenotypic plasticity and survival in populations of a gypsum endemic. Front. Plant Sci. 8: 843.

Mollica A., Stefanucci A., Macedonio G., Locatelli M., Luisi G., Novellino E., Zengin G, 2019. Chemical composition and biological activity of Capparis spinosa L. from Lipari Islan. South Afr. J. Bot. 120: 135–140.

Najafian S., Mehregan I., Iranbakhsh A., Assadi M., Fici S. 2021. Capparis spinosa (Capparaceae): A survey on morpho-ecologic variation for different populations of Iran. J. Genet. Resour. 72: 156–165.

Narumi T., Ohara M. 2018. Variation in reproductive modes and population genetic structures of a monocarpic perennial herb, Cardiocrinum cordatum, in relation to habitat fragmentation. Plant Species Biol. 33: 248–258.

Nei M. 1973. Analysis of gene diversity in subdivided populations. Proc. Natl. Acad. Sci. USA 70: 3321–3323.

Newbold T., Hudson L.N., Hill S.L., Contu S., Lysenko I., Senior R.A., Börger L., Bennett D.J., Choimes A., Collen B., Day J. 2015. Global effects of land use on local terrestrial biodiversity. Nature 520: 45–50.

Nosrati H., Hosseinpour Feizi M.A., Mazinani M., Haghighi A.R. 2012. Effect of population size on genetic variation levels in Capparis spinosa (Capparaceae) detected by RAPDs. EurAsian J. BioSci. 6: 70–75.

Ouborg. N.J., Vergeer P., Mix C. 2006. The rough edges of the conservation genetics paradigm for plants. J. Ecol. 94: 1233–1248.

Ozawa H., Watanabe A., Uchiyama K., Saito Y., Ide Y. 2013. Influence of long-distance deed dispersal on the genetic diversity of seed rain in fragmented Pinus densiflora populations relative to pollen-mediated gene flow. J. Hered. 104: 465–475.

Raffard A., Santoul F., Cucherousset J., Blanchet S. 2019. The community and ecosystem consequences of intraspecific diversity: A meta-analysis. Biol. Rev. 942: 648–66.

Rhizopoulou S., Psaras G.K. 2003. Development and structure of drought‐tolerant leaves of the Mediterranean shrub Capparis spinosa L. Ann. Bot. 923: 377–383.

Schlaepfer D.R., Braschler B., Rusterholz H.-P., Baur B. 2018. Genetic effects of anthropogenic habitat fragmentation on remnant animal and plant populations: a meta-analysis. Ecosphere 9: 10.

Shannon C.E. 1948. A mathematical theory of communication. Bell Syst. Techn. J. 27: 379–423.

Tewksbury J.J., Levey D.J., Haddad N.M., Sargent S., Orrock J.L., Weldon A., Danielson B.J., Brinkerhoff J., Damschen E.I., Townsend P. 2002. Corridors affect plants, animals, and their interactions in fragmented landscapes. Proc. Natl. Acad. Sci. USA 99: 12923–12926.

Vandepitte K., Jacquemyn H., Roldán-Ruiz I., Honnay O. 2007. Landscape genetics of the self-compatible forest herb Geum urbanum: effects of habitat age, fragmentation and local environment. Mol. Ecol. 16: 4171–4179.

Wang Q., Zhang M.-L., Yin L.-K. 2016. Phylogeographic structure of a tethyan relict Capparis spinosa (Capparaceae) traces pleistocene geologic and climatic changes in the western Himalayas, Tianshan mountains, and adjacent desert regions. Mol. Phylogen. 2016: 5792708.

Wilson M.C., Chen X-Y, Corlett R.T., Didham R.K., Ding P., Holt R.D., Holyoak M., Hu G., Hughes A.C., Jiang L., Laurance W.F., Liu J., Pimm S.L., Robinson S.K., Russo S.E., Si X., Wilcove D.S., Wu J., Yu M. 2016. Habitat fragmentation and biodiversity conservation: key findings and future challenges. Landsc. Ecol. 31: 219–227.

Wojdyło A., Nowicka P., Grimalt M., Legua P., Almansa M. S., Amorós A., Carbonell-Barrachina Á. A., Hernández F. 2019. Polyphenol compounds and biological activity of caper (Capparis spinosa L.) flower buds. Plants 8: 539.

Yu W., Wu B., Wang X., Yao Z., Li Y., Liu Y. 2020. Scale-dependent effects of habitat fragmentation on the genetic diversity of Actinidia chinensis populations in China. Hortic. Res. 13: 172.

Yuan N., Comes H.P., Mao Y., Qi X., Qiu Y. 2012. Genetic effects of recent habitat fragmentation in the Thousand-Island Lake region of southeast China on the distylous herb Hedyotis chrysotricha (Rubiaceae). Am. J. Bot. 99: 1715–1725.

Yuan N., Comes H., Cao Y., Guo R., Zhang Y.H., Qiu Y.X. 2015. A comparative study on genetic effects of artificial and natural habitat fragmentation on Loropetalum chinense (Hamamelidaceae) in Southeast China. Heredity 114: 544–551.

Zhang T., Tan D.-Y. 2008. Adaptive significances of sexual system in andromonoecious Capparis spinosa (Capparaceae). J. Syst. Evol. 46: 861–873.

Zhang T., Tan D.-Y. 2009. An examination of the function of male flowers in an andromonoecious shrub Capparis spinosa. J. Integr. Plant Biol. 51: 316–324.

Downloads

Published

2023-01-11

How to Cite

Nosrati, H., & Akbarian, H. (2023). Impact of habitat fragmentation on genetic structure of Capparis spinosa populations revealed by ISSR markers. Environmental and Experimental Biology, 20(4), 219–224. https://doi.org/10.22364/eeb.20.20