Insights into the core bacterial consortia of root endophytes in two cultivated varieties of rice in West Bengal
DOI:
https://doi.org/10.22364/eeb.20.19Keywords:
bacterial diversity, metagenome, microbial consortia, plant growth, rice root endophytesAbstract
Root endophytes are considered to be one of the potent environment-friendly substitutes for chemical fertilizers, as they possess an ability to induce crosstalk inside the hosts for growth promotion, nitrogen fixation, phosphate solubilization and iron sequestration. This study aimed to explore and evaluate the key root endophytic bacterial consortia of two widely cultivated varieties of rice (Oryza sativa L.), cv. ‘Saraswati’ (OS01) and cv. ‘Kunti’ (OS04). Detailed comparative metagenome data were generated for endophytes of OS01 and OS04 and the species richness was calculated. OS01 showed higher endophyte species richness than OS04, with alpha diversity values of 3.10 and 2.40, respectively. Bacillus, Magnetospirillum, Methanocystis, Desulfomicrobium and Pantoea were identified as common endophyte members for both cultivars. Solibacillus, Paenibacillus, Candidatus, and Melospira were unique members of OS01, and Herbaspirillum, Pandoraea, Anabaenopsis for OS04. Considerable occurrence of nitrogen fixing bacteria and methanogenic bacteria in the cultivars confirmed biological nitrogen fixation, which can contribute to plant development. Core homeotic pathways of amino acid biosynthesis and carbon metabolism were also reflected in endophytes from both cultivars, indicating a supportive environment for microorganisms. Sulfur metabolism pathways were likewise predicted to be active in the niche under study, which may be attributed as a response to arsenic stress. Furthermore, the most abundant genera identified may potentially serve as crucial consortium candidates for host plant development and contribute to better yield in a sustainable manner.
References
Adijaya I., Budiari N., Sari R, Elizabeth P. 2021. The agronomy performance and financial feasibility of hybrid maize varieties for consumption and cattle feed in difference planting system. IOP Conf. Ser. Earth Environ. Sci. 759: 012044. DOI: https://doi.org/10.1088/1755-1315/759/1/012044
Alori E.T., Glick B.R., Babalola O. 2017. Microbial phosphorus solubilization and its potential for use in sustainable agriculture. Front. Microbiol. 8: 971. DOI: https://doi.org/10.3389/fmicb.2017.00971
Azevedo J., Maccheroni W., Pereira J., Araújo W. 2000. Endophytic microorganisms: a review on insect control and recent advances on tropical plants. Electron. J. Biotechnol. 3: 15–16. DOI: https://doi.org/10.2225/vol3-issue1-fulltext-4
Breidenbach B., Conrad R. 2015. Seasonal dynamics of bacterial and archaeal methanogenic communities in flooded rice fields and effect of drainage. Front. Microbiol. 5: 752. DOI: https://doi.org/10.3389/fmicb.2014.00752
Cameron K.C., Di H.J., Moir J.L. 2013. Nitrogen losses from the soil/plant system: a review. Ann. Appl. Biol. 162: 145–173. DOI: https://doi.org/10.1111/aab.12014
Chen P., Zhou H., Huang Y., Xie Z., Zhang M., Wei Y., Li J., Ma Y., Luo M., Ding W., Cao J., Jiang T., Nan P., Fang J., Li X. 2021. Revealing the full biosphere structure and versatile metabolic functions in the deepest ocean sediment of the Challenger Deep. Genome Biol. 22: 207. DOI: https://doi.org/10.1186/s13059-021-02408-w
Cocking E.C. 2003. Endophytic colonization of plant roots by nitrogen-fixing bacteria. Plant Soil 252: 169–175. DOI: https://doi.org/10.1023/A:1024106605806
Correa-Galeote D., Bedmar E.J., Arone G.J. 2018. Maize endophytic bacterial diversity as affected by soil cultivation history. Front. Microbiol. 9: 484. DOI: https://doi.org/10.3389/fmicb.2018.00484
Cuevas V.C. 1991. Rapid composting for intensive rice land use. In: Innovation for Rural Development. SEAMEO-SEARCA, Los Baños, Philippines, pp. 5–10.
Daebeler A., Abell G.C., Bodelier P.L., Bodrossy L., Frampton D.M., Hefting M.M., Laanbroek H.J. 2012. Archaeal dominated ammonia-oxidizing communities in Icelandic grassland soils are moderately affected by long-term N fertilization and geothermal heating. Front. Microbiol. 3: 352. DOI: https://doi.org/10.3389/fmicb.2012.00352
Elekhtyar N. 2015. Efficiency of Pseudomonas fluorescens as plant growth-promoting rhizobacteria (PGPR) for the enhancement of seedling vigor, nitrogen uptake, yield and its attributes of rice (Oryza sativa L.). Int. J. Sci. Res. Agric. Sci. 2: 57–67.
Fadiji A.E., Babalola O.O. 2020. Elucidating mechanisms of endophytes used in plant protection and other bioactivities with multifunctional prospects. Front. Bioeng. Biotechnol. 8: 467. DOI: https://doi.org/10.3389/fbioe.2020.00467
Gaiero J.R., McCall C.A., Thompson K.A., Day N.J., Best A.S., Dunfield K.E. 2013. Inside the root microbiome: bacterial root endophytes and plant growth promotion. Amer. J. Bot. 100: 1738–1750. DOI: https://doi.org/10.3732/ajb.1200572
Ganguli S., Pal S., Das K., Banerjee R., Bagchi S.S. 2019. Gut microbial dataset of a foraging tribe from rural West Bengal – insights into unadulterated and transitional microbial abundance. Data Brief 25: 103963. DOI: https://doi.org/10.1016/j.dib.2019.103963
Garcias-Bonet N., Arrieta J.M., De Santana C.N., Duarte C.M., Marbà N. 2012. Endophytic bacterial community of a Mediterranean marine angiosperm (Posidonia oceanica). Front. Microbiol. 3: 342. DOI: https://doi.org/10.3389/fmicb.2012.00342
Hardoim P.R, van Overbeek L.S., Berg G., Pirttilä A.M., Compant S., Campisano A., Döring M., Sessitsch A. 2015. The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol. Mol. Biol. Rev. 79: 293–320. DOI: https://doi.org/10.1128/MMBR.00050-14
Hartmann M., Frey B., Mayer J., Mäder P., Widmer F. 2014. Distinct soil microbial diversity under long-term organic and conventional farming. ISME J. 9: 1177–1194. DOI: https://doi.org/10.1038/ismej.2014.210
Hu Z.Y., Zhu Y.G., Li M., Zhang L.G., Cao Z.H., Smith F.A. 2007. Sulfur (S)-induced enhancement of iron plaque formation in the rhizosphere reduces arsenic accumulation in rice (Oryza sativa L.) seedlings. Environ. Pollut. 147: 387–393. DOI: https://doi.org/10.1016/j.envpol.2006.06.014
Jackson M.L 1962. Soil Chemical Analysis. Constable and Co., London.
Jackson M.L 1967. Soil Chemical Analysis. Prentice Hall of India, New Delhi.
Jackson M.L 1973. Soil Chemical Analysis. Prentice Hall of India, New Delhi.
Jana S.K., Islam M.M., Hore S., Mandal S. 2022. Rice seed endophytes transmit into the plant seedling, promote plant growth and inhibit fungal phytopathogens. Plant Growth Regul. https://doi.org/10.1007/s10725-022-00914-w. DOI: https://doi.org/10.1007/s10725-022-00914-w
Khare E., Mishra J., Arora N.K. 2018. Multifaceted interactions between endophytes and plant: developments and prospects. Front. Microbiol. 9: 2732. DOI: https://doi.org/10.3389/fmicb.2018.02732
Köberl M., Dita M., Martinuz A., Staver C., Berg G. 2017. Members of Gammaproteobacteria as indicator species of healthy banana plants on Fusarium wilt-infested fields in Central America. Sci. Rep. 7: 45318. DOI: https://doi.org/10.1038/srep45318
Koch H., van Kessel M.A.H.J., Lücker S. 2019. Complete nitrification: insights into the ecophysiology of Comammox nitrospira. Appl. Microbiol. Biotechnol. 103: 177–189. DOI: https://doi.org/10.1007/s00253-018-9486-3
Krüger M., Frenzel P., Kemnitz D., Conrad R. 2005. Activity, structure and dynamics of the methanogenic archaeal community in a flooded Italian rice field. FEMS Microbiol. Ecol. 51: 323–331. DOI: https://doi.org/10.1016/j.femsec.2004.09.004
Kunda P., Dhal P., Mukherjee A. 2018. Endophytic bacterial community of rice (Oryza sativa L.) from coastal saline zone of West Bengal: 16S rRNA gene based metagenomics approach. Meta Gene 18: 79–86. DOI: https://doi.org/10.1016/j.mgene.2018.08.004
Ma Z., Yue Y., Feng M., Li Y., Ma X., Zhao X., Wang S. 2019. Mitigation of ammonia volatilization and nitrate leaching via loss control urea triggered H-bond forces. Sci. Rep. 9: 15140. DOI: https://doi.org/10.1038/s41598-019-51566-2
Mahdi S.S., Hassan G.I., Samoon S.A., Rather H.A., Dar S.A., Zehra B. 2010. Bio-fertilizers in organic agriculture. J. Phytol 2: 42–54.
Mano H., Morisaki H. 2008. Endophytic bacteria in the rice plant. Microbes Environ. 23: 109–117. DOI: https://doi.org/10.1264/jsme2.23.109
Marshall I.P.G., Starnawski P., Cupit C., Fernández Cáceres E., Ettema T.J.G., Schramm A., Kjeldsen K.U. 2017. The novel bacterial phylum Calditrichaeota is diverse, widespread and abundant in marine sediments and has the capacity to degrade detrital proteins. Environ. Microbiol. Rep. 9: 397–403. DOI: https://doi.org/10.1111/1758-2229.12544
Mbengue A., Namdev P., Kumar T., Halder K., Bhattacharjee S. 2016. Next generation whole genome sequencing of Plasmodium falciparum using Next Seq 500 technology in India. bioRxiv doi: https//doi.org/10.1101/068676. DOI: https://doi.org/10.1101/068676
McInerney M.J., Struchtemeyer C.G., Sieber J., Mouttaki H., Stams A.J., Schink B., Rohlin L., Gunsalus R.P. 2008. Physiology, ecology, phylogeny, and genomics of microorganisms capable of syntrophic metabolism. Ann. NY Acad. Sci. 1125: 58–72. DOI: https://doi.org/10.1196/annals.1419.005
Muangthong A., Youpensuk S., Rerkasem B. 2015. Isolation and characterisation of endophytic nitrogen fixing bacteria in sugarcane. Trop. Life Sci. Res. 26: 41–51.
Muthayya S., Sugimoto J.D., Montgomery S., Maberly G.F. 2014. An overview of global rice production, supply, trade, and consumption. Ann. NY Acad. Sci. 1324: 7–14. DOI: https://doi.org/10.1111/nyas.12540
Nair D.N., Padmavathy S. 2014. Impact of endophytic microorganisms on plants, environment and humans. Sci. World J. 2014: 250693. DOI: https://doi.org/10.1155/2014/250693
Nobu M.K., Narihiro T., Rinke C., Kamagata Y., Tringe S.G., Woyke T., Liu W.T. 2015. Microbial dark matter ecogenomics reveals complex synergistic networks in a methanogenic bioreactor. ISME J. 9: 1710–1722. DOI: https://doi.org/10.1038/ismej.2014.256
Oerke E.C., Dehne H.W. 2004. Safeguarding production-losses in major crops and the role of crop protection. Crop Prot. 23: 275–285. DOI: https://doi.org/10.1016/j.cropro.2003.10.001
Okon Y., Labandera-Gonzalez C.A. 1994. Agronomic applications of Azospirillum: an evaluation of 20 years worldwide field inoculation. Soil Biol. Biochem. 26: 1591–1601. DOI: https://doi.org/10.1016/0038-0717(94)90311-5
Patel J.K., Archana G. 2017. Diverse culturable diazotrophic endophytic bacteria from Poaceae plants show cross-colonization and plant growth promotion in wheat. Plant Soil 417: 99–116 DOI: https://doi.org/10.1007/s11104-017-3244-7
Radhakrishnan R., Hashem A., Abd Allah E.F. 2017. Bacillus: a biological tool for crop improvement through bio-molecular changes in adverse environments. Front. Physiol. 8: 667. DOI: https://doi.org/10.3389/fphys.2017.00667
Rinke C., Schwientek P., Sczyrba A., Ivanova N.N., Anderson I.J., Cheng J.F., Darling A., Malfatti S., Swan B.K., Gies E.A., Dodsworth J.A., Hedlund B.P., Tsiamis G., Sievert S.M., Liu W.T., Eisen J.A., Hallam S.J., Kyrpides N.C., Stepanauskas R., Rubin E.M., Hugenholtz P., Woyke T. 2013. Insights into the phylogeny and coding potential of microbial dark matter. Nature 499: 431–437. DOI: https://doi.org/10.1038/nature12352
Sahoo S., Sarangi S., Kerry R.G. 2017. Bioprospecting of endophytes for agricultural and environmental sustainability. In: Patra J., Vishnuprasad C., Das G. (Eds.) Microbial Biotechnology. Springer, Singapore, pp. 429–458. DOI: https://doi.org/10.1007/978-981-10-6847-8_19
Santoyo G. 2022. How plants recruit their microbiome? New insights into beneficial interactions. J. Adv Res. 40: 45–58. DOI: https://doi.org/10.1016/j.jare.2021.11.020
Santoyo G., Moreno-Hagelsieb G., Orozco-Mosqueda M.C., Glick B.R. 2015. Plant growth-promoting bacterial endophytes. Microbiol. Res. 183: 92–99. DOI: https://doi.org/10.1016/j.micres.2015.11.008
Schulz B., Wanke U., Draeger S., Aust H.J. 1993. Endophytes from herbaceous plants and shrubs: effectiveness of surface sterilization methods. Mycol. Res. 97: 1447–1450. DOI: https://doi.org/10.1016/S0953-7562(09)80215-3
Sengupta S., Ganguli S., Singh P.K. 2017. Metagenome analysis of the root endophytic microbial community of Indian rice (O. sativa L.). Genom. Data 12: 41–43. DOI: https://doi.org/10.1016/j.gdata.2017.02.010
Sessitsch A., Reiter B., Berg G. 2004. Endophytic bacterial communities of field-grown potato plants and their plant-growth-promoting and antagonistic abilities. Can. J. Microbiol. 50: 239–249. DOI: https://doi.org/10.1139/w03-118
Shen F.T., Yen J.H., Liao C.S., Chen W.C., Chao Y.T. 2019. Screening of rice endophytic biofertilizers with fungicide tolerance and plant growth-promoting characteristics. Sustainability 11: 1133. DOI: https://doi.org/10.3390/su11041133
Stepanyuk A. Kirschning A. 2019 A Synthetic terpenoids in the world of fragrances: Iso E Super® is the showcase. Beilstein J. Org. Chem. 15: 2590–2602. DOI: https://doi.org/10.3762/bjoc.15.252
Strobel G.A. 2002. Rainforest endophytes and bioactive products. Crit. Rev. Biotechnol. 22: 315–333. DOI: https://doi.org/10.1080/07388550290789531
Sturz A.V., Christie B.R., Nowak J. 2000. Bacterial endophytes: potential role in developing sustainable systems of crop production. Crit. Rev. Plant Sci. 19: 1–30. DOI: https://doi.org/10.1080/07352680091139169
Sturz A.V, Kimpinski J. 2004. Endo root bacteria derived from marigolds (Tagetes spp.) can decrease soil population densities of root-lesion nematodes in the potato root zone. Plant Soil 262 :241–249. DOI: https://doi.org/10.1023/B:PLSO.0000037046.86670.a3
Suman A., Yadav A.N., Verma P. 2016. Endophytic microbes in crops: diversity and beneficial impact for sustainable agriculture. In: Singh D., Singh H., Prabha R. (Eds.) Microbial Inoculants in Sustainable Agricultural Productivity. Springer, New Delhi, pp. 117–143. DOI: https://doi.org/10.1007/978-81-322-2647-5_7
Sun B., Wang X., Wang F., Jiang Y., Zhang X.X. 2013. Assessing the relative effects of geographic location and soil type on microbial communities associated with straw decomposition. Appl. Environ. Microbiol. 79: 3327–3335. DOI: https://doi.org/10.1128/AEM.00083-13
Sun X., Kop L.F.M., Lau M.C.Y., Frank J., Jayakumar A., Lücker S., Ward B.B. 2019. Uncultured Nitrospina-like species are major nitrite oxidizing bacteria in oxygen minimum zones. ISME J. 13: 2391–2402. DOI: https://doi.org/10.1038/s41396-019-0443-7
Torres M., White J., Zhang X., Hinton D. 2012. Endophyte-mediated adjustments in host morphology and physiology and effects on host fitness traits in grasses. Fungal Ecol. 5: 322–330. DOI: https://doi.org/10.1016/j.funeco.2011.05.006
Trivedi P., Delgado-Baquerizo M., Anderson I.C., Singh B.K. 2016. Response of soil properties and microbial communities to agriculture: implications for primary productivity and soil health indicators. Front. Plant Sci. 12: 990. DOI: https://doi.org/10.3389/fpls.2016.00990
Turner T.R., James E.K., Poole P.S. 2013. The plant microbiome. Genome Biol. 14: 209. DOI: https://doi.org/10.1186/gb-2013-14-6-209
Vacheron J., Desbrosses G., Bouffaud M.L., Touraine B., Moënne-Loccoz Y., Muller D., Legendre L., Wisniewski-Dyé F., Prigent-Combaret C. 2013. Plant growth-promoting rhizobacteria and root system functioning. Front. Plant Sci. 4: 356. DOI: https://doi.org/10.3389/fpls.2013.00356
Wani S.H., Sah S.K. 2014. Biotechnology and abiotic stress tolerance in rice. J. Rice Res. 2: e105. DOI: https://doi.org/10.4172/jrr.1000e105
Wood D.E., Salzberg S.L. 2014. Kraken: ultrafast metagenomic sequence classification using exact alignments. Genome Biol. 15: R46. DOI: https://doi.org/10.1186/gb-2014-15-3-r46
Xia Y., Liu J., Chen C., Mo X., Tan Q., He Y., Wang Z., Yin J., Zhou G. 2022. The multifunctions and future prospects of endophytes and their metabolites in plant disease management. Microorganisms 10: 1072. DOI: https://doi.org/10.3390/microorganisms10051072
Youssef N.H., Farag I.F., Rinke C., Hallam S.J., Woyke T., Elshahed M.S. 2015. In silico analysis of the metabolic potential and niche specialization of candidate phylum “Latescibacteria” (WS3). PLoS ONE 10: e0127499. DOI: https://doi.org/10.1371/journal.pone.0127499
Zayadan B.K., Matorin D.N., Baimakhanova G.B., Bolathan K., Oraz G.D., Sadanov A.K. 2014. Promising microbial consortia for producing biofertilizers for rice fields. Microbiology 83: 391–397. DOI: https://doi.org/10.1134/S0026261714040171
Downloads
Published
Issue
Section
License
Copyright (c) 2022 University of LatviaThis is an open access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles in this journal without asking prior permission from the publisher or the author. This is in accordance with the BOAI definition of open access. Author(s) of the published papers retain copyright, the papers are made freely available for non-commercial purposes, allowing download, reuse, reprint and distribution of the material as long as the original authors and the source are cited. This license is equivalent to the CC BY-NC-ND.