Insights into the core bacterial consortia of root endophytes in two cultivated varieties of rice in West Bengal

Authors

  • Subhadipa Sengupta Bidhannagar College, Post Graduate Department of Botany
  • Pankaj K. Singh Hawkesbury Institute for the Environment, Western Sydney University
  • Sayak Ganguli St. Xavier’s College (Autonomous), Department of Biotechnology

DOI:

https://doi.org/10.22364/eeb.20.19

Keywords:

bacterial diversity, metagenome, microbial consortia, plant growth, rice root endophytes

Abstract

Root endophytes are considered to be one of the potent environment-friendly substitutes for chemical fertilizers, as they possess an ability to induce crosstalk inside the hosts for growth promotion, nitrogen fixation, phosphate solubilization and iron sequestration. This study aimed to explore and evaluate the key root endophytic bacterial consortia of two widely cultivated varieties of rice (Oryza sativa L.), cv. ‘Saraswati’ (OS01) and cv. ‘Kunti’ (OS04). Detailed comparative metagenome data were generated for endophytes of OS01 and OS04 and the species richness was calculated. OS01 showed higher endophyte species richness than OS04, with alpha diversity values of 3.10 and 2.40, respectively. BacillusMagnetospirillumMethanocystisDesulfomicrobium and Pantoea were identified as common endophyte members for both cultivars. SolibacillusPaenibacillusCandidatus, and Melospira were unique members of OS01, and HerbaspirillumPandoraeaAnabaenopsis for OS04. Considerable occurrence of nitrogen fixing bacteria and methanogenic bacteria in the cultivars confirmed biological nitrogen fixation, which can contribute to plant development. Core homeotic pathways of amino acid biosynthesis and carbon metabolism were also reflected in endophytes from both cultivars, indicating a supportive environment for microorganisms. Sulfur metabolism pathways were likewise predicted to be active in the niche under study, which may be attributed as a response to arsenic stress. Furthermore, the most abundant genera identified may potentially serve as crucial consortium candidates for host plant development and contribute to better yield in a sustainable manner.

References

Adijaya I., Budiari N., Sari R, Elizabeth P. 2021. The agronomy performance and financial feasibility of hybrid maize varieties for consumption and cattle feed in difference planting system. IOP Conf. Ser. Earth Environ. Sci. 759: 012044. DOI: https://doi.org/10.1088/1755-1315/759/1/012044

Alori E.T., Glick B.R., Babalola O. 2017. Microbial phosphorus solubilization and its potential for use in sustainable agriculture. Front. Microbiol. 8: 971. DOI: https://doi.org/10.3389/fmicb.2017.00971

Azevedo J., Maccheroni W., Pereira J., Araújo W. 2000. Endophytic microorganisms: a review on insect control and recent advances on tropical plants. Electron. J. Biotechnol. 3: 15–16. DOI: https://doi.org/10.2225/vol3-issue1-fulltext-4

Breidenbach B., Conrad R. 2015. Seasonal dynamics of bacterial and archaeal methanogenic communities in flooded rice fields and effect of drainage. Front. Microbiol. 5: 752. DOI: https://doi.org/10.3389/fmicb.2014.00752

Cameron K.C., Di H.J., Moir J.L. 2013. Nitrogen losses from the soil/plant system: a review. Ann. Appl. Biol. 162: 145–173. DOI: https://doi.org/10.1111/aab.12014

Chen P., Zhou H., Huang Y., Xie Z., Zhang M., Wei Y., Li J., Ma Y., Luo M., Ding W., Cao J., Jiang T., Nan P., Fang J., Li X. 2021. Revealing the full biosphere structure and versatile metabolic functions in the deepest ocean sediment of the Challenger Deep. Genome Biol. 22: 207. DOI: https://doi.org/10.1186/s13059-021-02408-w

Cocking E.C. 2003. Endophytic colonization of plant roots by nitrogen-fixing bacteria. Plant Soil 252: 169–175. DOI: https://doi.org/10.1023/A:1024106605806

Correa-Galeote D., Bedmar E.J., Arone G.J. 2018. Maize endophytic bacterial diversity as affected by soil cultivation history. Front. Microbiol. 9: 484. DOI: https://doi.org/10.3389/fmicb.2018.00484

Cuevas V.C. 1991. Rapid composting for intensive rice land use. In: Innovation for Rural Development. SEAMEO-SEARCA, Los Baños, Philippines, pp. 5–10.

Daebeler A., Abell G.C., Bodelier P.L., Bodrossy L., Frampton D.M., Hefting M.M., Laanbroek H.J. 2012. Archaeal dominated ammonia-oxidizing communities in Icelandic grassland soils are moderately affected by long-term N fertilization and geothermal heating. Front. Microbiol. 3: 352. DOI: https://doi.org/10.3389/fmicb.2012.00352

Elekhtyar N. 2015. Efficiency of Pseudomonas fluorescens as plant growth-promoting rhizobacteria (PGPR) for the enhancement of seedling vigor, nitrogen uptake, yield and its attributes of rice (Oryza sativa L.). Int. J. Sci. Res. Agric. Sci. 2: 57–67.

Fadiji A.E., Babalola O.O. 2020. Elucidating mechanisms of endophytes used in plant protection and other bioactivities with multifunctional prospects. Front. Bioeng. Biotechnol. 8: 467. DOI: https://doi.org/10.3389/fbioe.2020.00467

Gaiero J.R., McCall C.A., Thompson K.A., Day N.J., Best A.S., Dunfield K.E. 2013. Inside the root microbiome: bacterial root endophytes and plant growth promotion. Amer. J. Bot. 100: 1738–1750. DOI: https://doi.org/10.3732/ajb.1200572

Ganguli S., Pal S., Das K., Banerjee R., Bagchi S.S. 2019. Gut microbial dataset of a foraging tribe from rural West Bengal – insights into unadulterated and transitional microbial abundance. Data Brief 25: 103963. DOI: https://doi.org/10.1016/j.dib.2019.103963

Garcias-Bonet N., Arrieta J.M., De Santana C.N., Duarte C.M., Marbà N. 2012. Endophytic bacterial community of a Mediterranean marine angiosperm (Posidonia oceanica). Front. Microbiol. 3: 342. DOI: https://doi.org/10.3389/fmicb.2012.00342

Hardoim P.R, van Overbeek L.S., Berg G., Pirttilä A.M., Compant S., Campisano A., Döring M., Sessitsch A. 2015. The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol. Mol. Biol. Rev. 79: 293–320. DOI: https://doi.org/10.1128/MMBR.00050-14

Hartmann M., Frey B., Mayer J., Mäder P., Widmer F. 2014. Distinct soil microbial diversity under long-term organic and conventional farming. ISME J. 9: 1177–1194. DOI: https://doi.org/10.1038/ismej.2014.210

Hu Z.Y., Zhu Y.G., Li M., Zhang L.G., Cao Z.H., Smith F.A. 2007. Sulfur (S)-induced enhancement of iron plaque formation in the rhizosphere reduces arsenic accumulation in rice (Oryza sativa L.) seedlings. Environ. Pollut. 147: 387–393. DOI: https://doi.org/10.1016/j.envpol.2006.06.014

Jackson M.L 1962. Soil Chemical Analysis. Constable and Co., London.

Jackson M.L 1967. Soil Chemical Analysis. Prentice Hall of India, New Delhi.

Jackson M.L 1973. Soil Chemical Analysis. Prentice Hall of India, New Delhi.

Jana S.K., Islam M.M., Hore S., Mandal S. 2022. Rice seed endophytes transmit into the plant seedling, promote plant growth and inhibit fungal phytopathogens. Plant Growth Regul. https://doi.org/10.1007/s10725-022-00914-w. DOI: https://doi.org/10.1007/s10725-022-00914-w

Khare E., Mishra J., Arora N.K. 2018. Multifaceted interactions between endophytes and plant: developments and prospects. Front. Microbiol. 9: 2732. DOI: https://doi.org/10.3389/fmicb.2018.02732

Köberl M., Dita M., Martinuz A., Staver C., Berg G. 2017. Members of Gammaproteobacteria as indicator species of healthy banana plants on Fusarium wilt-infested fields in Central America. Sci. Rep. 7: 45318. DOI: https://doi.org/10.1038/srep45318

Koch H., van Kessel M.A.H.J., Lücker S. 2019. Complete nitrification: insights into the ecophysiology of Comammox nitrospira. Appl. Microbiol. Biotechnol. 103: 177–189. DOI: https://doi.org/10.1007/s00253-018-9486-3

Krüger M., Frenzel P., Kemnitz D., Conrad R. 2005. Activity, structure and dynamics of the methanogenic archaeal community in a flooded Italian rice field. FEMS Microbiol. Ecol. 51: 323–331. DOI: https://doi.org/10.1016/j.femsec.2004.09.004

Kunda P., Dhal P., Mukherjee A. 2018. Endophytic bacterial community of rice (Oryza sativa L.) from coastal saline zone of West Bengal: 16S rRNA gene based metagenomics approach. Meta Gene 18: 79–86. DOI: https://doi.org/10.1016/j.mgene.2018.08.004

Ma Z., Yue Y., Feng M., Li Y., Ma X., Zhao X., Wang S. 2019. Mitigation of ammonia volatilization and nitrate leaching via loss control urea triggered H-bond forces. Sci. Rep. 9: 15140. DOI: https://doi.org/10.1038/s41598-019-51566-2

Mahdi S.S., Hassan G.I., Samoon S.A., Rather H.A., Dar S.A., Zehra B. 2010. Bio-fertilizers in organic agriculture. J. Phytol 2: 42–54.

Mano H., Morisaki H. 2008. Endophytic bacteria in the rice plant. Microbes Environ. 23: 109–117. DOI: https://doi.org/10.1264/jsme2.23.109

Marshall I.P.G., Starnawski P., Cupit C., Fernández Cáceres E., Ettema T.J.G., Schramm A., Kjeldsen K.U. 2017. The novel bacterial phylum Calditrichaeota is diverse, widespread and abundant in marine sediments and has the capacity to degrade detrital proteins. Environ. Microbiol. Rep. 9: 397–403. DOI: https://doi.org/10.1111/1758-2229.12544

Mbengue A., Namdev P., Kumar T., Halder K., Bhattacharjee S. 2016. Next generation whole genome sequencing of Plasmodium falciparum using Next Seq 500 technology in India. bioRxiv doi: https//doi.org/10.1101/068676. DOI: https://doi.org/10.1101/068676

McInerney M.J., Struchtemeyer C.G., Sieber J., Mouttaki H., Stams A.J., Schink B., Rohlin L., Gunsalus R.P. 2008. Physiology, ecology, phylogeny, and genomics of microorganisms capable of syntrophic metabolism. Ann. NY Acad. Sci. 1125: 58–72. DOI: https://doi.org/10.1196/annals.1419.005

Muangthong A., Youpensuk S., Rerkasem B. 2015. Isolation and characterisation of endophytic nitrogen fixing bacteria in sugarcane. Trop. Life Sci. Res. 26: 41–51.

Muthayya S., Sugimoto J.D., Montgomery S., Maberly G.F. 2014. An overview of global rice production, supply, trade, and consumption. Ann. NY Acad. Sci. 1324: 7–14. DOI: https://doi.org/10.1111/nyas.12540

Nair D.N., Padmavathy S. 2014. Impact of endophytic microorganisms on plants, environment and humans. Sci. World J. 2014: 250693. DOI: https://doi.org/10.1155/2014/250693

Nobu M.K., Narihiro T., Rinke C., Kamagata Y., Tringe S.G., Woyke T., Liu W.T. 2015. Microbial dark matter ecogenomics reveals complex synergistic networks in a methanogenic bioreactor. ISME J. 9: 1710–1722. DOI: https://doi.org/10.1038/ismej.2014.256

Oerke E.C., Dehne H.W. 2004. Safeguarding production-losses in major crops and the role of crop protection. Crop Prot. 23: 275–285. DOI: https://doi.org/10.1016/j.cropro.2003.10.001

Okon Y., Labandera-Gonzalez C.A. 1994. Agronomic applications of Azospirillum: an evaluation of 20 years worldwide field inoculation. Soil Biol. Biochem. 26: 1591–1601. DOI: https://doi.org/10.1016/0038-0717(94)90311-5

Patel J.K., Archana G. 2017. Diverse culturable diazotrophic endophytic bacteria from Poaceae plants show cross-colonization and plant growth promotion in wheat. Plant Soil 417: 99–116 DOI: https://doi.org/10.1007/s11104-017-3244-7

Radhakrishnan R., Hashem A., Abd Allah E.F. 2017. Bacillus: a biological tool for crop improvement through bio-molecular changes in adverse environments. Front. Physiol. 8: 667. DOI: https://doi.org/10.3389/fphys.2017.00667

Rinke C., Schwientek P., Sczyrba A., Ivanova N.N., Anderson I.J., Cheng J.F., Darling A., Malfatti S., Swan B.K., Gies E.A., Dodsworth J.A., Hedlund B.P., Tsiamis G., Sievert S.M., Liu W.T., Eisen J.A., Hallam S.J., Kyrpides N.C., Stepanauskas R., Rubin E.M., Hugenholtz P., Woyke T. 2013. Insights into the phylogeny and coding potential of microbial dark matter. Nature 499: 431–437. DOI: https://doi.org/10.1038/nature12352

Sahoo S., Sarangi S., Kerry R.G. 2017. Bioprospecting of endophytes for agricultural and environmental sustainability. In: Patra J., Vishnuprasad C., Das G. (Eds.) Microbial Biotechnology. Springer, Singapore, pp. 429–458. DOI: https://doi.org/10.1007/978-981-10-6847-8_19

Santoyo G. 2022. How plants recruit their microbiome? New insights into beneficial interactions. J. Adv Res. 40: 45–58. DOI: https://doi.org/10.1016/j.jare.2021.11.020

Santoyo G., Moreno-Hagelsieb G., Orozco-Mosqueda M.C., Glick B.R. 2015. Plant growth-promoting bacterial endophytes. Microbiol. Res. 183: 92–99. DOI: https://doi.org/10.1016/j.micres.2015.11.008

Schulz B., Wanke U., Draeger S., Aust H.J. 1993. Endophytes from herbaceous plants and shrubs: effectiveness of surface sterilization methods. Mycol. Res. 97: 1447–1450. DOI: https://doi.org/10.1016/S0953-7562(09)80215-3

Sengupta S., Ganguli S., Singh P.K. 2017. Metagenome analysis of the root endophytic microbial community of Indian rice (O. sativa L.). Genom. Data 12: 41–43. DOI: https://doi.org/10.1016/j.gdata.2017.02.010

Sessitsch A., Reiter B., Berg G. 2004. Endophytic bacterial communities of field-grown potato plants and their plant-growth-promoting and antagonistic abilities. Can. J. Microbiol. 50: 239–249. DOI: https://doi.org/10.1139/w03-118

Shen F.T., Yen J.H., Liao C.S., Chen W.C., Chao Y.T. 2019. Screening of rice endophytic biofertilizers with fungicide tolerance and plant growth-promoting characteristics. Sustainability 11: 1133. DOI: https://doi.org/10.3390/su11041133

Stepanyuk A. Kirschning A. 2019 A Synthetic terpenoids in the world of fragrances: Iso E Super® is the showcase. Beilstein J. Org. Chem. 15: 2590–2602. DOI: https://doi.org/10.3762/bjoc.15.252

Strobel G.A. 2002. Rainforest endophytes and bioactive products. Crit. Rev. Biotechnol. 22: 315–333. DOI: https://doi.org/10.1080/07388550290789531

Sturz A.V., Christie B.R., Nowak J. 2000. Bacterial endophytes: potential role in developing sustainable systems of crop production. Crit. Rev. Plant Sci. 19: 1–30. DOI: https://doi.org/10.1080/07352680091139169

Sturz A.V, Kimpinski J. 2004. Endo root bacteria derived from marigolds (Tagetes spp.) can decrease soil population densities of root-lesion nematodes in the potato root zone. Plant Soil 262 :241–249. DOI: https://doi.org/10.1023/B:PLSO.0000037046.86670.a3

Suman A., Yadav A.N., Verma P. 2016. Endophytic microbes in crops: diversity and beneficial impact for sustainable agriculture. In: Singh D., Singh H., Prabha R. (Eds.) Microbial Inoculants in Sustainable Agricultural Productivity. Springer, New Delhi, pp. 117–143. DOI: https://doi.org/10.1007/978-81-322-2647-5_7

Sun B., Wang X., Wang F., Jiang Y., Zhang X.X. 2013. Assessing the relative effects of geographic location and soil type on microbial communities associated with straw decomposition. Appl. Environ. Microbiol. 79: 3327–3335. DOI: https://doi.org/10.1128/AEM.00083-13

Sun X., Kop L.F.M., Lau M.C.Y., Frank J., Jayakumar A., Lücker S., Ward B.B. 2019. Uncultured Nitrospina-like species are major nitrite oxidizing bacteria in oxygen minimum zones. ISME J. 13: 2391–2402. DOI: https://doi.org/10.1038/s41396-019-0443-7

Torres M., White J., Zhang X., Hinton D. 2012. Endophyte-mediated adjustments in host morphology and physiology and effects on host fitness traits in grasses. Fungal Ecol. 5: 322–330. DOI: https://doi.org/10.1016/j.funeco.2011.05.006

Trivedi P., Delgado-Baquerizo M., Anderson I.C., Singh B.K. 2016. Response of soil properties and microbial communities to agriculture: implications for primary productivity and soil health indicators. Front. Plant Sci. 12: 990. DOI: https://doi.org/10.3389/fpls.2016.00990

Turner T.R., James E.K., Poole P.S. 2013. The plant microbiome. Genome Biol. 14: 209. DOI: https://doi.org/10.1186/gb-2013-14-6-209

Vacheron J., Desbrosses G., Bouffaud M.L., Touraine B., Moënne-Loccoz Y., Muller D., Legendre L., Wisniewski-Dyé F., Prigent-Combaret C. 2013. Plant growth-promoting rhizobacteria and root system functioning. Front. Plant Sci. 4: 356. DOI: https://doi.org/10.3389/fpls.2013.00356

Wani S.H., Sah S.K. 2014. Biotechnology and abiotic stress tolerance in rice. J. Rice Res. 2: e105. DOI: https://doi.org/10.4172/jrr.1000e105

Wood D.E., Salzberg S.L. 2014. Kraken: ultrafast metagenomic sequence classification using exact alignments. Genome Biol. 15: R46. DOI: https://doi.org/10.1186/gb-2014-15-3-r46

Xia Y., Liu J., Chen C., Mo X., Tan Q., He Y., Wang Z., Yin J., Zhou G. 2022. The multifunctions and future prospects of endophytes and their metabolites in plant disease management. Microorganisms 10: 1072. DOI: https://doi.org/10.3390/microorganisms10051072

Youssef N.H., Farag I.F., Rinke C., Hallam S.J., Woyke T., Elshahed M.S. 2015. In silico analysis of the metabolic potential and niche specialization of candidate phylum “Latescibacteria” (WS3). PLoS ONE 10: e0127499. DOI: https://doi.org/10.1371/journal.pone.0127499

Zayadan B.K., Matorin D.N., Baimakhanova G.B., Bolathan K., Oraz G.D., Sadanov A.K. 2014. Promising microbial consortia for producing biofertilizers for rice fields. Microbiology 83: 391–397. DOI: https://doi.org/10.1134/S0026261714040171

Downloads

Published

2023-01-11

How to Cite

Sengupta, S., Singh, P. K., & Ganguli, S. (2023). Insights into the core bacterial consortia of root endophytes in two cultivated varieties of rice in West Bengal. Environmental and Experimental Biology, 20(4), 205-218. https://doi.org/10.22364/eeb.20.19