Isolation and characterization of gill mucus-associated antagonistic bacteria in the Asian swamp eel (Monopterus albus)
DOI:
https://doi.org/10.22364/eeb.23.02Keywords:
antagonism, aquaculture, fish health, mucosal immunity, pathogensAbstract
This study investigated the gill mucus of Asian swamp eel (Monopterus albus) for the presence of antagonistic bacteria against known aquatic pathogens, Vibrio harveyi and Aeromonas hydrophila. Initial screening of 500 bacterial isolates via the spot-on-lawn and co-incubation assays, identified five with significant antagonistic activity, which were further subjected to morphological, enzymatic, biochemical, and molecular characterization. All five isolates were Gram-negative bacilli. Four isolates were identified as belonging to the Pseudomonas genus, a known probiont with documented biocontrol properties in various plant and animal species. The remaining isolate exhibited high 16S rRNA gene sequence similarity to Aeromonas dhakensis, a known human pathogen. All isolates demonstrated the ability to produce at least three of six tested extracellular enzymes: catalase, amylase, protease, lipase, gelatinase, and urease. Given the observed antagonistic activity of these isolates, further research is warranted to evaluate their potential application as probiotics. This study represents the first investigation of antagonistic bacteria in swamp eel gill mucus and contributes to the limited research on fish gill mucus as a source of such bacteria.
References
Allameh S.K., Daud H., Yusoff F.M., Saad C.R,, Ideris A. 2012. Isolation, identification and characterization of Leuconostoc mesenteroides as a new probiotic from intestine of snakehead fish (Channa striatus). Afr. J. Biotechnol. 11: 3810–3816.
Aravena-Roman M., Harnett G.B., Riley T.V., Inglis T.J.J., Chang B.J. 2011. Aeromonas aquariorum is widely distributed in clinical and environmental specimens and can be misidentified as Aeromonas hydrophila. J. Clin. Microbiol. 49: 3006–3008.
Beaz-Hidalgo R., Martínez-Murcia A., Figueras M.J. 2013. Reclassification of Aeromonas hydrophila subsp. dhakensis Huys et al. 2002 and Aeromonas aquariorum Martínez-Murcia et al. 2008 as Aeromonas dhakensis sp. nov. comb nov. and emendation of the species Aeromonas hydrophila. Syst. Appl. Microbiol. 36: 171–176.
Benhamed S., Guardiola F.A., Mars M., Esteban M.A. 2014. Pathogen bacteria adhesion to skin mucus of fishes. Vet. Microbiol. 171: 1–12.
Bhatnagar A., Dhillon O. 2019. Characterization, screening, and application of bacteria with probiotic properties isolated from the gut of Labeo calbasu (Hamilton). Fisher. Aquat. Life 27: 178–189.
Bhatnagar A., Rathi P. 2023. Isolation and characterization of autochthonous probiotics from skin mucus and their in vivo validation with dietary probiotic bacteria on growth performance and immunity of Labeo calbasu (Hamilton 1822). Fish Physiol. Biochem. 49: 191–208.
Bianciotto V., Lumini E., Bonfante P., Vandamme P. 2003. ‘Candidatus Glomeribacter gigasporarum’ gen. nov., sp. nov., an endosymbiont of arbuscular mycorrhizal fungi. Int. J. Syst. Evol. Microbiol. 53: 121–124.
Bragadeeswaran S., Thangaraj S. 2011. Hemolytic and antibacterial studies on skin mucus of eel fish, Anguilla anguilla Linnaeus, 1758. Asian J. Biol. Sci. 4: 272–276.
Breakwell D., Woolverton C., Maconald B., Smith K., Robinson R. 2007. Colony morphology protocol. American Society for Microbiology, 7 p.
Bunnoy A., Na-Nakorn U., Kayansamruaj P., Srisapoome P. 2019. Acinetobacter strain KUO11TH, a unique organism related to Acinetobacter pittii and isolated from the skin mucus of healthy bighead catfish and its efficacy against several fish pathogens. Microorganisms 7: 549.
Burr S.E., Gobeli S., Kuhnert P., Goldschmidt-Clermont E., Frey J. 2010. Pseudomonas chlororaphis subsp. piscium subsp. nov., isolated from freshwater fish. Int. J. Syst. Evol. Microbiol. 60: 2753–2757.
Caipang C.M.A., Brinchmann M.F., Kiron V. 2010. Antagonistic activity of bacterial isolates from intestinal microbiota of Atlantic cod, Gadus morhua, and an investigation of their immunomodulatory capabilities. Aquacult. Res. 41: 249–256.
Caipang C.M.A., Deocampo J.E.Jr., Pakingking R.V.Jr., Fenol J.T., Onayan F.B. 2022. Rapid screening of potential probionts from the gut microbiota of climbing perch, Anabas testudineus. J. Biodivers. Ecol. Sci. 21: 82–88.
Caipang C.M.A., Deocampo J.E. Jr., Pakingking R.V. Jr., Suharman I., Fenol J.T., Onayan F.B. 2021. Utilization of sodium bicarbonate as anesthetic during routine husbandry activities in ornamental fish. IOP Conf. Ser. Earth Environ. Sci. 934: 012001.
Caipang C.M.A., Trebol K.M.P., Suharman I., Pakingking R.V. Jr., Deocampo J.E.Jr. 2023. Isolation of potential probionts from brackishwater enriched with high levels of carbon source. J. Microbiol. Biotechnol. Food Sci. 13: e9819.
Carda-Dieguez M., Ghai R., Rodriguez-Valera F., Amaro C. 2017. Wild eel microbiome reveals that skin mucus of fish could be a natural niche for aquatic mucosal pathogen evolution. Microbiome 5: 162.
Chabrillon M., Arijo S., Diaz-Rosales P., Balebona M.C., Moriñigo M.A. 2006. Interference of Listonella anguillarum with potential probiotic microorganisms isolated from farmed gilthead seabream (Sparus aurata, L.). Aquaculture 37: 78–86.
Chen P.-L., Lamy B., Ko W.-C. 2016. Aeromonas dhakensis, an increasingly recognized human pathogen. Front. Microbiol. 7: 793.
Chen X., Fang S., Wei L., Zhong Q. 2019. Systematic evaluation of the gut microbiome of swamp eel (Monopterus albus) by 16S rRNA gene sequencing. PeerJ 7: e8176.
Chen X., Lai C., Wang Y., Wei L., Zhong Q. 2018. Disinfection effect of povidone-iodine in aquaculture water of swamp eel (Monopterus albus). PeerJ 6: e5523.
Clinton M., Wyness A.J., Martin S.A.M., Brierley A., Ferrier D.E.K. 2021. Sampling the fish gill microbiome: a comparison of tissue biopsies and swabs. BMC Microbiology 21: 313.
Damsgaard C., Findorf J., Helbo S., Kocagoz Y., Buchanan R., Huong D.T.T., Weber R.E., Fago A., Bayley M., Wang T. 2014. High blood oxygen affinity in the air-breathing swamp eel Monopterus albus. Comp. Biochem. Physiol. 178: 102–108.
Das A., Nakhro K., Chowdhury S., Kamilya D. 2013. Effects of potential probiotic Bacillus amyloliquifaciens FPTB16 on systemic and cutaneous mucosal immune responses and disease resistance of catla (Catla catla). Fish Shellfish Immunol. 35: 1547–1553.
Dash S., Das S.K., Samal J., Thatoi H.N. 2018. Epidermal mucus, a major determinant in fish health: a review. Iranian J. Vet. Res. 19: 72–81.
Dela Cruz T.E.E., Torres J.M.O. 2012. Gelatin hydrolysis test protocol. American Society for Microbiology. 10 p.
de la Peña L.D., Lavilla-Pitogo C., Paner M.G. 2001. Luminescent vibrios associated with mortality in pond-cultured shrimp Penaeus monodon in the Philippines: species composition. Fish Pathol. 36:133–138.
Doroteo A.M., Pedroso F.L., Lopez J.D.M., Apines-Amar M.J.S. 2018. Evaluation of potential probiotics isolated from saline tilapia in shrimp aquaculture. Aquacult. Int. 26: 1095–1107.
El-Saadony M.T., Alagawany M., Patra A.K., Kar I., Tiwari R., Dawood M.A.O., Dhama K., Abdel-Latif H.M.R. 2021. The functionality of probiotics in aquaculture: an overview. Fish Shellfish Immunol. 117: 36–52.
Esteban M.A. 2012. An overview of the immunological defenses in fish skin. ISRN Immunol. 2012: 853470.
Esteve C., Alcaide E., Blasco M.D. 2012. Aeromonas hydrophila subsp. dhakensis isolated from feces, water and fish in Mediterranean Spain. Microbes Environ. 27: 367–373.
Fang Y., Wu L., Chen G., Feng G. 2016. Complete genome sequence of Pseudomonas azotoformans S4, a potential biocontrol bacterium. J. Biotechnol. 227: 25–26.
Feng J., Lin P., Guo S., Jia Y., Wang Y., Zadlock F., Zhang Z. 2017. Identification and characterization of novel conserved 46 kD maltoporin of Aeromonas hydrophila as a versatile vaccine candidate in European eel (Anguilla anguilla). Fish Shellfish Immunol. 64: 93–103.
Fernández-Bravo A., Figueras M.J. 2020. An update on the genus Aeromonas: taxonomy, epidemiology, and pathogenicity. Microorganisms 8: 129.
Gan L., Xu W.-H., Xiong Y., Lv Z., Zheng J., Zhang Y. Lin J., Liu J., Chen S., Chen M., Guo Q., Wu J., Chen J., Su Z., Sun J., He Y., Liu C., Wang W., Verstraete W., Sorgeloos P., Defoirdt T., Qin Q., Liu Y. 2021. Probiotics: their action against pathogens can be turned around. Sci. Rep. 11: 13247.
Gomez D., Sunyer J.O., Salinas I. 2013. The mucosal immune system of fish: the evolution of tolerating commensals while fighting pathogens. Fish Shellfish Immunol. 35: 1729–1739.
Hedmon O., Jacqueline A., Koffi K.T., Drago K.C., Engeu O.P. 2018. Fish mucus: a neglected reservoir for antimicrobial peptides. Asian J. Pharm. Res. 6: 6–11.
Heikkinen J., Tiirola M., Mustonen S.M., Eskelinen P., Navia-Paldanius D., Von Wright A. 2014. Suppression of Saprolegnia infection in rainbow trout (Oncorhynchus mykiss) eggs using protective bacteria and ultraviolet irradiation of the hatchery water. Aquacult. Res. 47: 925–939.
Hilles A.R., Mahmood S., Kaderi M.A., Hashim R., Jalal T.K., Salleh M.A. 2018. In-vitro evaluation of the antifungal activities of eel skin mucus from Asian swamp eel (Monopterus albus). Fungal Territ. 2: 1–2.
Hilles A.R., Mahmood S., Waly M.I., Kaderi M.A., Ahmed Q.U., Azmi S.N.H., A;Asmari A.F., Ali N., Alharbi M., Rauf M.A. 2022. The therapeutic potential of skin mucus from Asian swamp eel (Monopterus albus): In vivo evaluation and histological evidence. J. King Saud Univ. Sci. 34: 102011.
Hofte M. 2021. The use of Pseudomonas spp. as bacterial biocontrol agents to control plant disease. In: Kohl J., Ravensberg W. (Eds.) Microbial Bioprotectants for Plant Disease Management. Burleigh Dodds Science Publishing, London. 400 p.
Ikram M.N.N.M., Ridzwan B.H. 2013. A preliminary screening of antifungal activities from skin mucus extract of Malaysian local swamp eel (Monopterus albus). Int. Res. J. Pharm. 3: 1–8.
Ivanova L., Rangel-Huerta O.D., Tartor H., Gjessing M.C., Dahle M.K., Uhlig S. 2022. Fish skin and gill mucus: a source of metabolites for non-invasive health monitoring and research. Metabolites 12: 28.
Kearns P.J., Bowen J.L., Tlusty M.F. 2017. The skin microbiome of cow-nose rays (Rhinoptera bonasus) in an aquarium touch-tank exhibit. Zoo Biol. 36: 226–230.
Kesarcodi-Watson A., Kaspar H., Lategan M.J., Gibson L. 2007. Probiotics in aquaculture: the need, principles and mechanisms of action and screening processes. Aquaculture 274: 1–14.
Khushboo, Karnwal A., Malik T. 2023. Characterization and selection of probiotic lactic acid bacteria from different dietary sources for development of functional foods. Front. Microbiol. 14: 1170725.
Lal A., Cheeptham N. 2012. Starch agar protocol. American Society for Microbiology. 11 p.
Larsen A., Tao Z., Bullard S.A., Arias C.R. 2013. Diversity of the skin microbiota of fishes: evidence for host species specificity. FEMS Microbiol. Ecol. 85: 483–494.
Lauritsen J.G., Hansen M.L., Bech P.K., Jeisbak L., Gram L., Strube M.L. 2021. Identification and differentiation of Pseudomonas species in field samples using an rpoD amplicon sequencing methodology. mSystems 6: e00704-21.
Lazado C.C., Caipang C.M.A., Brinchmann M.F., Kiron V. 2011. In vitro adherence of two candidate probiotics from Atlantic cod and their interference with the adhesion of two pathogenic bacteria. Vet. Microbiol. 148: 252–259.
Lazado C.C., Caipang C.M.A. 2014. Mucosal immunity and probiotics in fish. Fish Shellfish Immunol. 39: 78– 89.
Leonard A.B., Carlson J.M., Bishoff D.E., Sandelbach S.I., Yung S.B., Ramzanali S. 2014. The skin microbiome of Gambusia affinis is defined and selective. Adv. Microbiol. 4: 335–343.
Letunic I., Bork P. 2021. Interactive Tree of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 49: 293–296.
Liu W., Fan Y., Li Z., Zhao J., Zhou Y., Jiang N., Zeng J., Cain K., Zeng L. 2019. Isolation, identification, and classification of novel rhabdovirus from diseased Chinese rice-field eels (Monopterus albus). Arch. Virol. 164: 105–116.
Liu Q., Zhang Y., Yu N., Bi Z., Zhu A., Zhan X., Wu W., Yu P., Chen D., Cheng S., Cao L. 2015. Genome sequence of Pseudomonas parafulva CRS01-1, an antagonistic bacterium isolated from rice field. J. Biotechnol. 206: 89–90.
Lorgen-Ritchie M., Clarkson M., Chalmers L., Taylor J.F., Migaud H., Martin S.A.M. 2022. Temporal changes in skin and gill microbiomes of Atlantic salmon in a recirculating aquaculture system - why do they matter? Aquaculture 558: 738352.
Lowrey L., Woodhams D.C., Tacchi L., Salinas I. 2015. Topographical mapping of the rainbow trout (Oncorhynchus mykiss) microbiome reveals a diverse bacterial community with antifungal properties in the skin. Appl. Environ. Microbiol. 81: 6915–6925.
MacWilliams M.P. 2009a. Indole test protocol. American Society for Microbiology. 9 p.
MacWilliams M.P. 2009b. Citrate test protocol. American Society for Microbiology. 7p .
Mancuso M., Rappazzo A.C., Genovese M., El Hady M., Ghonimy A., Ismail M., Reda R., Cappello S., Genovese L., Maricchiolo G. 2015. In vitro selection of bacteria and isolation of probionts from farmed Sparus aurata with potential for use as probiotics. Int. J. Animal Biol. 1: 93–98.
Martinez-Murcia A.J., Saavedra M.J., Mota V.R., Maier T., Stackebrandt E., Cousin S. 2008. Aeromonas aquariorum sp. nov., isolated from aquaria of ornamental fish. Int. J. Syst. Evol. Microbiol. 58:1169–1175.
McDevitt S. 2009. Methyl red and Voges-Proskauer test protocols. American Society for Microbiology. 9 p.
Nandi A., Banerjee G., Dan S.K., Ghosh P., Ghosh K., Ray A.K. 2017. Screening of autochthonous intestinal microbiota as candidate probiotics isolated from four freshwater teleosts. Curr. Sci. 113: 767–773.
Nayak S.K. 2010. Probiotics and immunity: a fish perspective. Fish Shellfish Immunol. 29: 2–14.
Oni F.E., Esmaeel Q., Onyeka J.T., Adeleke R., Jacquard C., Clement C., Gross H., Barka E.A., Hofte M. 2022. Pseudomonas lipopeptide-mediated biocontrol: chemotaxonomy and biological activity. Molecules 27: 372.
Perales I. 2003. Chapter 19 Culture media for Aeromonas spp. and Plesiomonas shigelloides. In: Corry J.E.L., Curtis G.D.W., Baird R.M. (eds) Handbook of Culture Media for Food Microbiology. Elsevier, Amsterdam, pp. 317–344.
Petersen C., Round J.L. 2014. Defining dysbiosis and its influence on host immunity and disease. Cell. Microbiol. 16: 1024–1033.
Pethkar M.R., Lokhande M.V. 2017. Antifungal activity of skin mucus of three cultivable fish species (Catla catla, Cirrhinus mrigala and Anguilla anguilla). Int. J. Zool. Stud. 2: 1–3.
Rathinam R.B., Iburahim S.A., Ramanan S.S., Tripathi G. 2022. A scientometric mapping of research on Aeromonas infection in fish across the world (1998-2020). Aquacult. Int. 30: 341–363.
Reiner K. 2012. Carbohydrate fermentation protocol. American Society for Microbiology. 10 p.
Reverter M., Sasal P., Tapissier-Bontemps N., Lecchini D., Suzuki M. 2017. Characterisation of the gill mucosal bacterial communities of four butterflyfish species: a reservoir of bacterial diversity in coral reef ecosystems. FEMS Microbiol. Ecol. 93: fix051.
Ringoe E., Holzapfel W. 2000. Identification and characterization of Carnobacteria associated with the gills of Atlantic salmon (Salmo salar L.). Syst. Appl. Microbiol. 23: 523–527.
Rizzo C., Gugliandolo C., Giudice A.L. 2020. Exploring Mediterranean and Arctic environments as a novel source of bacteria producing antibacterial compounds to be applied in aquaculture. Appl. Sci. 10: 4006.
Rodrigues N.P.A., Garcia E.F., De Souza E.L. 2021. Selection of lactic acid bacteria with promising probiotic aptitudes from fruit and ability to survive in different food matrices. Braz. J. Microbiol. 52: 2257–2269.
Rosado D., Canada P., Silva S.M., Ribeiro N., Diniz P., Xavier R. 2023. Disruption of skin, gill, and gut mucosae microbiome of gilthead seabream fingerlings after bacterial infection and antibiotic treatment. FEMS Microbes 4: 1–13.
Rosado D., Perez-Losada M., Severino R., Cable J., Xavier R. 2018. Characterization of the skin and gill microbiomes of the 18
farmed seabass (Dicentrarchus labrax) and seabream (Sparus aurata). Aquaculture 500: 57–64.
Sang M.K., Kim E.N., Han G.D., Kwack M.S., Jeun Y.C., Kim K.D. 2014. Priming-mediated systemic resistance in cucumber induced by Pseudomonas azotoformans GC-B19 and Paenibacillus elgii MM-B22 against Colletotrichum orbiculare. Biol. Control 104: 834–842.
Shi Z., Ren D., Hu S., Hu X., Wu L., Lin H., Hu J., Zhang G., Guo L. 2015. Whole genome sequence of Pseudomonas aeruginosa F9676, an antagonistic bacterium isolated from rice seed. J. Biotechnol. 211: 77–78.
Shields P., Cathcart L. 2011. Motility test medium protocol. American Society for Microbiology. 10 p.
Simora R.M.C., Trafalgar R.F.M., Legario F.S. 2015. Characterization of extracellular enzymes from culturable autochthonous gut bacteria in rabbitfish (Siganus guttatus). ELBA Bioflux 7: 67–76.
Smith A.C., Hussey M.A. 2005. Gram stain protocols. American Society for Microbiology. 9 p.
Speare L., Septer A.N. 2019. Coincubation assay for quantifying competitive interactions between Vibrio fischeri isolates. J. Visual. Exp. 149: e59759.
Stevens J.L., Jackson R.L., Olson J.B. 2016. Bacteria associated with lionfish (Pterois volitans/miles complex) exhibit antibacterial activity against known fish pathogens. Mar. Ecol. Prog. Ser. 558: 167–180.
Tamura K., Stecher G., Kumar S. 2021. MEGA 11: Molecular Evolutionary Genetics Analysis Version 11. Mol. Bio. Evol. 38: 3022–3027.
Teneva D.G., Goranov B.G., Denkova R.S., Denkova Z.R., Kostov G.A. 2016. Antimicrobial activity of Lactobacillus plantarum strains against Escherichia coli strains. Sci. Works Univ. Food Technol. 63: 199–206.
Teunis P., Figueras M.J. 2016. Reassessment of the enteropathogenicity of mesophilic Aeromonas species. Front. Microbiol. 7: 1–12.
Thelma J., Asha Devi N.K. 2016. Evaluation of probiotics from mucus associated epibiotic bacteria on marine fishes. J. Mar. Biol. Oceanogr. 5: 2.
Tiralongo F., Messina G., Lombardo B.M., Longhitano L., Volti G.L., Tibullo D. 2020. Skin mucus of marine fish as a source for the development of antimicrobial agents. Front. Mar. Sci. 7: 1–7.
Trifinopoulus J., Nguyen L.T., Von Haeseler A., Minh B.Q. 2016. W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res. 44: W232–W235.
Wulff E.G., Sorensen J.L., Lubeck M., Nielsen K.F., Thrane U., Torp J. 2010. Fusarium spp. associated with rice Bakanae: ecology, genetic diversity, pathogenicity and toxigenicity. Environ. Microbiol. 12: 649–657.
Xia L., Han P., Cheng X., Li Y., Zheng C., Yuan H., Zhang W., Xu Q. 2019. Aeromonas veronii caused disease and pathological changes in Asian swamp eel Monopterus albus. Aquacult. Res. 50: 2978–2985.
Xu W., Lv Z., Guo Q., Deng Z., Yang C., Cao Z., Li Y., Huang C., Wu Z., Chen S., He Y., Sun J., Liu Y., Gan L. 2023. Selective antagonism of Lactiplantibacillus plantarum and Pediococcus acidilactici against Vibrio and Aeromonas in the bacterial community of Artemia nauplii. Microbiol. Spectrum 11: e00533-23.
Yi S.-W., You M.-J., Cho H.-S., Lee C.-S., Kwon J.-K., Shin G.-W. 2013. Molecular characterization of Aeromonas species isolated from farmed eels (Anguilla japonica). Vet. Microbiol. 164: 195–200.
Yu Y.-Y., Ding L.-G., Huang Z.-Y., Xu H.-Y., Xu Z. 2021. Commensal bacteria-immunity crosstalk shapes mucosal homeostasis in teleost fish. Rev. Aquacult. 13: 2322–2343.
Zheng W., Wang X., Chen Y., Dong Y., Zhou D., Liu R., Zhou H., Bian X., Wang H., Tu Q., Ravichaandarn V., Zhang Y., Li A., Fu J., Yin J. 2021. Recombineering facilitates the discovery of natural product biosynthetic pathways in Pseudomonas parafulva. Biotechnol. J. 16: 2000575.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 University of LatviaThis is an open access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles in this journal without asking prior permission from the publisher or the author. This is in accordance with the BOAI definition of open access. Author(s) of the published papers retain copyright, the papers are made freely available for non-commercial purposes, allowing download, reuse, reprint and distribution of the material as long as the original authors and the source are cited. This license is equivalent to the CC BY-NC-ND.