Creating a conceptual framework for analysis of vascular plant diversity in a coastal landscape: functional aspects and ecosystem services for plants at the Baltic Sea

Authors

  • Gederts Ievinsh Department of Ecology, Faculty of Medicine and Life Sciences, University of Latvia, 1 Jelgavas Str., Riga LV–1004, Latvia

DOI:

https://doi.org/10.22364/eeb.22.19

Keywords:

Baltic Sea, coastal landscape, ecological indicators, ecosystem services, environmental heterogeneity, functional traits, physiological adaptations, plant diversity, vegetation classification

Abstract

The aim of the study is to develop a conceptual framework for the analysis of the diversity of coastal plant species of the Baltic Sea in relation to adaptation to specific conditions and participation in the provision of ecosystem services. The possibilities of coastal plant classification for further analysis of their properties will be described, concentrating on both opportunities and weaknesses of each particular system. These will include approaches related to aspects of taxonomy, life forms and functional strategies, geographical- and habitat-related distribution, ecological indicators, species associations forming vegetation, dependence on landforms as well as provision of ecosystem services. All of these approaches make important contributions to the context of coastal plant occurrence. However, at the level of distribution of individuals of plant species, the perspective is in analysis of their relationship with coastal landscape elements, landforms. Abiotic and biotic aspects of the ecological niche should also be taken into account for the analysis of plant functional diversity, together with the morphological, physiological and biochemical characteristics of individuals. The importance of plants in the functional diversity of coastal ecosystems should be linked to their contribution to ecosystem services.

References

Abou Baker D.H. 2020. Achillea millefolium L. ethyl acetate fraction induces apoptosis and cell cycle arrest in human cervical cancer (HeLa) cells. Ann. Agric. Sci. 65: 42–48.

Adam P. 1978. Geographical variation in British saltmarsh vegetation. J. Ecol. 66: 339–366.

Adam P. 1981. The vegetation of British saltmarshes. New Phytol. 88: 143–196.

Alonso-Blanco C., Aarts M.G.M., Bentsink L., Keurentjes J.J.B., Reymond M., Vreugdenhil D., Koornneef M. 2009. What has natural variation taught us about plant development, physiology, and adaptation? Plant Cell 21: 1877–1896.

Andersone-Ozola U., Jēkabsone A., Purmale L., Romanovs M., Ievinsh G. 2021. Abiotic stress tolerance of coastal accessions of a promising forage legume species, Trifolium fragiferum. Plants 10: 1552.

Andersone-Ozola U., Gaile L., Ievinsh G. 2017. Physiological responses of rare coastal salt marsh species Triglochin maritima L. to soil chemical heterogeneity. Acta Biologica Universitatis Daugavpiliensis 17: 149–155.

Atia A., Debez A., Barhoumi Z., Abdelly C., Smaoui A. 2010. Localization and composition of seed oils of Crithmum maritimum L. (Apiaceae). Afr. J. Biotechnol. 9: 6482–6485.

Attia-Ismail S.A. 2018. Halophytes ad forages. In: Edvan R.L., Bezerra L.R. (Eds.) New Perspectives in Forage Crops. Intech Open, UK, 69616.

Avelar F.F., de Matos A.T., de Matos M.P., Borges A.C. 2014. Coliform bacteria removal from sewage in constructed wetlands planted with Mentha aquatica. Environ. Technol. 35: 2095–2103.

Barbier E.B. 2013. Valuing ecosystem services for coastal wetland protection and restoration: progress and challenges. Resources 2: 213–230.

Barbier E.B., Hacker S.D., Kennedy C., Koch E.W., Stier A.C., Silliman B.R. 2011. The value of estuarine and coastal ecosystem services. Ecol. Monogr. 81: 159–193.

Barrett-Lennard E.G. 2003. The interaction between waterlogging and salinity in higher plants: causes, consequences and implications. Plant Soil 253: 35–54.

Bartelheimer M., Poschlod P. 2016. Functional characterizations of Ellenberg indicator values – a review on ecophysiological determinants. Funct. Ecol. 30: 506–516.

Beeftink W.G. 1985. Vegetation study as a generator for population biological and physiological research on salt marshes. Vegetatio 62: 469–486.

Bertness M.D., Ellison A.M. 1987. Determinants of pattern in a New England salt marsh. Ecology 57: 129–147.

Box E.O. 1996. Plant functional types and climate at the global scale. J. Veget. Sci. 7: 591–600.

Brock J., Aboling S., Stelzer R., Esch E., Papenbrock J. 2007. Genetic variation among different populations of Aster tripolium grown on naturally and anthropogenic salt-contaminated habitats: implications for conservation strategies. J. Plant Res. 120: 99–112.

Brooker R.W. 2017. Clonal plants and facilitation research: Bridging the gap. Folia Geobot. 52: 295–302.

Buhmann A., Papenbrock J. 2013. An economic point of view of secondary compounds in halophytes. Funct. Plant Biol. 40: 952–967.

Burnside N.G.. Joyce C.B.. Puurmann E.. Scott D.M. 2007. Use of vegetation classification and plant indicators to assess grazing abandonment in Estonian coastal wetlands. J. Veget. Sci. 18: 645–654.

Cárdenas-Pérez S., Piernik A., Chanona-Pérez J.J., Grigore M.N., Perea-Flores M.J. 2021. An overview of the emerging trends of Salicornia L. genus as a sustainable crop. Environ. Exp. Bot. 191: 104606.

Carstensen J., Conley D.J., Almroth-Rosell E., Asmala E., Bonsdorff E., Fleming-Lehtinen V., Gustafsson B.G., Gustafsson C., Heiskanen A.-S., Janas U., Norkko A., Slomp C., Villnäs A., Voss M., Zilius M. 2020. Factors regulating the coastal nutrient filter in the Baltic Sea. AMBIO 49: 1194–1210.

Centofanti T., Bañuelos G. 2019. Practical uses of halophytic plants as sources of food and fodder. In: Hasanuzzaman M., Shabala S., Fujita M. (Eds.) Halophytes and Climate Change: Adaptive Mechanisms and Potential Uses. CABI International, pp. 324–342.

Chauvier I., Thuiller W., Brun P., Lavergne S., Descombes P., Karger D.N., Renaud J., Zimmermann N.E. 2021. Influence of climate, soil, and land cover on plant species distribution in the European Alps. Ecol. Monogr. 21: e01433.

Choudhary N., Prabhu K.S., Prasad S.B., Singh A., Agarhari U.C., Suttee A. 2020. Phytochemistry and pharmacological exploration of Chenopodium album: Current and future perspectives. Res. J. Pharm. Techol. 13: 3933–3940.

Chytrý M. et al. 2020. EUNIS Habitat Classification: Expert system, characteristic species combinations and distribution maps of European habitats. Appl. Veget. Sci. 23: 648–675.

Clausing G., Vickers K., Kadereit J.W. 2000. Historical biogeography in a linear system: genetic variation of sea rocket (Cakile maritima) and sea holly (Eryngium maritimum) along European coasts. Mol. Ecol. 9: 1823–1833.

Colmer T.D., Flowers T.J. 2008. Flooding tolerance in halophytes. New Phytol. 179: 964-–974.

Cornelisssen J.H.C., Lavorel S., Garnier E., Diaz S., Buchmann N., Gurwich D.E., Reich P.B., ter Steege H., Morgan H.D., van der Heijden M.G.A., Pausas J.G., Poorter H. 2003. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Austr. J. Bot. 51: 335–380.

Dahija S., Bešta-Gajević R., Jerković-Mujkić A., Ðug S., Muratović E. 2019. Utilization of Mentha aquatica L. for removal of fecal pathogens and heavy metals of Bosna river, Bosnia and Herzegovina. Int. J. Phytoremed. 21: 807–815.

DalCorso G., Fasani E., Manara A., Visioli G., Furini A. 2019. Heavy metal pollutions: state of the art and innovation in phytoremediation. Int. J. Mol. Sci. 20: 3412.

Daleo P., Alberti J., Chaneton E.J., Iribarne O., Tognetti P.M., Bakker J.D., Borer E.T., Bruschetti M., MacDougall A.S., Pascual J., Sankaran M., Seabloom E.W., Wang S., Bagchi S., Brudvig L.A., Catford J.A., Dickman C.R., Dickson T.L., Donohue I., Eisenhauer N., Gruner D.S., Haider S., Jentsch A., Knops J.H.M., Lekberg Y., McCulley R.L., Moore J.L., Mortensen B., Ohlert T., Pärtel M., Peri P.L., Power S.A., Risch A.C., Rocca C., Smith N.G., Stevens C., Tamme R., Veen G.F.C., Wilfahrt P.A., Hautier Y. 2023. Environmental heterogeneity modulates the effect of plant diversity on the spatial variability of grassland biomes. Nature Commun. 14: 1809.

Dansereau P. 1951. Description and recording of vegetation upon a structural basis. Ecology 32: 172–229.

De La Cruz P.M.C. 2021. The knowledge status of coastal and marine ecosystem services – challenges, limitations and lessons learned from the application of the ecosystem services approach in management. Front. Marine Sci. 8: 684770.

de Oliveira Braga L.E., da Silva G.G., de Oliveira Sousa I.M., Sousa de Oliveira E.C., Jorge M.P., Monteiro K.M., Sedano T.C., Foglio M.A., Ruiz A.L.T.G. 2022. Gastrointestinal effects of Mentha aquatica L. essential oil. Inflammopharmacology 30: 2127–2137.

Dolina K., Jug-Dujaković M., Łuczaj L., Vitasović-Kosić I. 2016. A century of changes in wild food plant use in coastal Croatia: the example of Krk and Poljica. Acta Soc. Bot. Polon. 85: 3508.

Dolina K., Łuczaj L. 2014. Wild food plants used on the Dubrovnik coast (south-eastern Croatia). Acta Soc. Bot. Polon. 83: 175–181.

Döring M., Ratter B.M.W. 2018. Coastal landscapes: The relevance of researching coastscapes for managing coastal change in North Frisia. Area 50: 169–176.

Drius M., Carranza M.L., Stanisci A., Jones L. 2016. The role of Italian coastal dunes as carbon sinks and diversity sources. A multi-service perspective. Appl. Geogr. 75: 127–136.

Dronova I. 2017. Environmental heterogeneity as a bridge between ecosystem service and visual quality objectives in management, planning and design. Landsc. Urban Plann. 163: 90–106.

Du J., Hesp P.A. 2020. Salt spray distribution and its impact on vegetation zonation on coastal dunes: a review. Estuaries Coasts 43: 1885–1907.

Du X., Li P., Guan F.-C. 2009. The efficient cultivation techniques of Suaeda glauca bunge in protected field. J. Jilin Agric. Sci. 34: 52–53.

Du Rietz G.E. 1931. Life forms of terrestrial flowering plants. Acta Phytogeogr. Suecica 3: 1–95.

Dyer A.R., Goldberg D.E., Turkington R., Sayre C. 2001. Effects of growing conditions and source habitat on plant traits and functional group definition. Funct. Ecol. 15: 85–95.

Ellenberg H., Mueller-Dombois D. 1965. A key to Raunkiaer plant life forms with revised subdivisions. Ber. Geobot. 37: 56–73.

Ellenberg H.,, Weber H.E., Dull R., Wirth V., Werner W., Paulissen D. 1992. Zeigerwerte von Pflanzen in Mitteleuropa. Scripta Geobot. 18: 1–248.

Ewel J.J., Bigelow S.W. 1996. Plant life forms and ecosystem functioning. In: Orians G.H., Dirzo R., Cushman J.H. (Eds.) Biodiversity and Ecosystem Processes in Tropical Forests. Springer-Verlag, Berlin, Germany, pp. 101–126.

Farris E., Pisanu S., Ceccherelli G., Filigheddu R. 2013. Human trampling effects on Mediterranean coastal dune plants. Plant Biosyst. 147: 1043–1051.

Fekete R., Bak H., Vincze O., Süveges K., Molnr V.A. 2022. Road traffic and landscape characteristics predict the occurrence of native halophytes on roadside verges. Sci. Rep. 12: 1298.

Fountoulakis M.S., Sabathianakis G., Kritsotakis I., Kabourakis E.M., Manios T. 2017. Halophytes as vertical-flow constructed wetland vegetation for domestic wastewater treatment. Sci. Total Environ. 583: 432–439.

Friess D.A., Yando E.S., Wong L.-W., Bhatia N. 2020. Indicators of scientific value: An under-recognized ecosystem service for coastal and marine habitats. Ecol. Indic. 113: 106255.

Funabashi M. 2016. Synecological farming: Theoretical foundation on biodiversity responses of plant communities. Plant Biotechnol. 33: 213–234.

Gestberger P. 2001. Plantago coronopus subsp. commutata introduced as a roadside halophyte in central Europe. Tuxenia 21: 249–256.

Gilbert M.E., Ripley B.S. 2010. Resolving the differences in plant burial responses. Austral Ecol. 35: 53–59.

Glenn E.P., Anday T., Chaturvedy R., Martinez-Garcia R., Pearlstein S., Soliz D., Nelson S.G., Felger R.S. 2013. Three halophytes for saline-water agriculture: An oilseed, a forage and a grain crop. Environ. Exp. Bot. 92: 110–121.

Grime J.P. 2014. Plant types and vegetation responses to climate manipulation at the Buxton hub. In: Mucina L., Price J.N., Kalwij J.M. (Eds.) Biodiversity and Vegetation: Patterns, Processes, Conservation. Kwongan Foundation, Perth, pp. 35–36.

Grime J.P. 1974. Vegetation classification by reference to strategies. Nature 250: 26–31.

Halloy S. 1990. A morphological classification of plants, with special reference to the New Zealand alpine flora. J. Veget. Sci. 1: 291–304.

Heckwolf M.J., Peterson A., Jänes H., Horne P., Künne J., Lievrsage K., Sajeva M., Reusch T.B.H., Kotta J. 2021. From ecosystems to socio-economic benefits: A systematic review of coastal ecosystem services in the Baltic Sea. Sci. Total Environ. 755: 142565.

Herben T., Klimešová J. 2020. Evolution of clonal growth forms in angiosperms. New Phytol. 225: 999–1010.

Hermy M. 1993. Annex I of the Habitat Directive 92/43/EEC: Comments with respect to Flanders, Wallonia and Belgium. Institute of Nature Conservation. Report A/93/33, Hasselt, Belgium.

Heywood V.H., Zohary D. 1995. A catalogue of the wild relatives of cultivated plants native to Europe. Flora Mediterranea 5: 375–415.

Hodgson J.G., Wilson P.J., Hunt P., Grime J.P., Thompson K. 1999. Allocating C-S-R plant functional types: a soft approach to a hard problem. OIKOS 85: 282–294.

Hulisz P., Piernik A., Mantilla-Contreras J., Elvisto T. 2016. Main driving factors for seacoast vegetation in the Sourthern and Eastern Baltic. Wetlands 36: 909–919.

Ieviņa S., Karlsons A., Osvalde A., Andersone-Ozola U., Ievinsh G. 2023. Coastal wetland species Rumex hydrolapathum: tolerance against flooding, salinity and heavy metals for its potential use in phytoremediation and environmental restoration technologies. Life 13: 1604.

Ievinsh G. 2006. Biological basis of biological diversity: physiological adaptations of plants to heterogeneous habitats along a sea coast. Acta Univ. Latv. 710: 53–79.

Ievinsh G. 2014. Bringing physiology back to botany: plant physiological adaptations as a crucial link between genotype and environment. In: Rakotoarisoa, N.R., Blackmore, S., Riera, B. (Eds.) Botanists of the Twenty-first Century: Roles, Challenges and Opportunities. UNESCO, Paris, France, pp. 112–118.

Ievinsh G. 2020. Coastal plant species as electrolytophytes: effect of NaCl and light intensity on ion accumulation characteristics of Atriplex glabriuscula from drift line community. Environ. Exp. Biol. 18: 95–105.

Ievinsh G. 2022. Where land meets sea: biology of coastal soils. In: Giri B., Kapoor R., Varma A., Wu, Q.-S. (Eds.) Structure and Functions of Pedosphere. Springer Nature, Singapore, pp. 151–172.

Ievinsh G. 2024. Biology of hemiparasitic Rhinanthus species in the context of grassland biodiversity. Land 13: 814.

Ievinsh G. 2023. Halophytic clonal plant species: important functional aspects for existence in heterogeneous saline habitats. Plants 12: 1728.

Ievinsh G., Andersone-Ozola U., Landorfa-Svalbe Z., Karlsons A., Osvalde A. 2020a. Wild plants from coastal habitats as a potential resource for soil remediation. In: Giri B., Warma A. (Eds.) Soil Health. Soil Biology Vol. 59. Springer Nature, Switzerland, pp. 121–144.

Ievinsh G., Andersone-Ozola U., Jēkabsone A. 2022a. Similar responses of relatively salt tolerant plants to Na and K during chloride salinity: Comparison of growth, water content and ion accumulation. Life 12: 1577.

Ievinsh G., Andersone-Ozola U., Samsone I. 2020b. Alyssum montanum subsp. gmelinii, a rare plant species from coastal sand dunes, as a potential Ni accumulator: comparison with Alyssum murale. Environ. Exp. Biol. 18: 107–115.

Ievinsh G., Dišlere E., Karlsons A., Osvalde A., Vikmane M. 2020c. Physiological responses of wetland species Rumex hydrolapathum to increased concentration of biogenous heavy metals Zn and Mn in substrate. Proc. Latvian Acad. Sci. B 74: 35–47.

Ievinsh G., Druva-Lusite I., Karlsons A., Andersone-Ozola U., Ievina B., Necajeva J., Samsone I. 2020d. Physiological performance of a coastal marsh plant Hydrocotyle vulgaris in natural conditions in relation to mineral nutrition and mycorrhizal symbiosis. Proc. Latvian Acad. Sci. B 74: 252–262.

Ievinsh G., Ieviņa S., Andersone-Ozola U., Samsone I. 2021. Leaf sodium, potassium and electrolyte accumulation capacity of plant species from salt-affected coastal habitats of the Baltic Sea: Towards a definition of Na hyperaccumulation. Flora 274: 151748.

Ievinsh G., Landorfa-Svalbe Z., Andersone-Ozola U., Karlsons A., Osvalde A. 2022b. Salinity and heavy metal tolerance, and phytoextraction potential of Ranunculus sceleratus plants from a sandy coastal beach. Life 12: 1959.

Ievinsh G., Osvalde A., Karlsons A., Andersone-Ozola U. 2022c. Hylotelephium maximum from coastal drift lines is a promising Mn and Zn accumulator with a high tolerance to biogenous heavy metals. Stresses 2: 450–465.

Ingerpuu N., Sarv M. 2015. Effect of grazing on plant diversity of coastal meadows in Estonia. Ann. Bot. Fenn. 52: 84–92.

Irfan M., Hayat S., Hayat Q., Afroz S., Ahmad A. 2010. Physiological and biochemical changes in plants under waterlogging. Protoplasma 241: 3–17.

Isermann M., Rooney P. 2014. Biological flora of the British Isles: Eryngium maritimum. J. Ecol. 102: 789–821.

Jēkabsone A., Andersone-Ozola U., Karlsons A., Romanovs M., Ievinsh G. 2022. Effect of salinity on growth, ion accumulation and mineral nutrition of different accessions of a crop wild relative legume species, Trifolium fragiferum. Plants 11: 797.

Jēkabsone A., Ievinsh G. 2022. Salinity tolerance and ion accumulation of coastal and inland accessions of clonal climbing plant species Calystegia sepium in comparison with a coastal-specific clonal species Calystegia soldanella. Int. J. Plant Biol. 13: 381–399.

Jēkabsone A., Kuļika J., Romanovs M., Andersone-Ozola U., Ievinsh G. 2023. Salt tolerance and ion accumulation potential in several halophytic plant species depending on the type of anion. Int. J. Plant Biol. 14: 1131–1154.

Jia W., Ma M., Chen J., Wu S2021.. Plant morphological, physiological and anatomical adaptation to flooding stress and the underlying molecular mechanisms. Int. J. Molec. Sci. 22: 1086.

Jutila H. 1999. Effect of grazing on the vegetation of shore meadows along the Bothnian Sea, Finland. Plant Ecol. 140: 77–88.

Jutila H. 2001. How does grazing by cattle modify the vegetation of coastal grasslands along the Baltic Sea? Ann. Bot. Fenn. 38: 181–200.

Kadereit J.W., Arafeh R., Somogyi G., Westberg E. 2005. Terrestrial growth and marine dispersal? Comparative phylogeography of five coastal plant species at a European scale. Taxon 54: 861–876.

Kadereit J.W., Westberg, E. 2007. Determinants of phylogeographic structure: a comparative study of seven coastal flowering plant species across their European range. Watsonia 26: 229–238.

Kafle A., Timilsina A., Gautam A., Adhikari K., Bhattarai A., Aryal N. 2022. Phytoremediation: Mechanisms, plant selection and enhancement by natural and synthetic agents. Environ. Adv. 8: 100203.

Kalniņš M., Andersone-Ozola U., Gudrā D., Sieriņa A., Fridmanis D., Ievinsh G., Muter O. 2022. Effect of bioaugumentation on the growth and rhizosphere microbiome assembly of hydroponic cultures of Mentha aquatica. Ecol. Genet. Genom. 22: 100107.

Karlsons A., Druva-Lusite I., Osvalde A., Necajeva J., Andersone-Ozola U., Samsone I., Ievinsh G. 2017. Adaptation strategies of rare plant species to heterogeneous soil conditions on a coast of a lagoon lake as revealed by analysis of mycorrhizal symbiosis and mineral constituent dynamics. Environ. Exp. Biol. 15: 113–126.

Karlsons A., Osvalde A., Ievinsh G. 2011. Growth and mineral nutrition of two Triglochin species from saline wetlands: adaptation strategies to conditions of heterogeneous mineral supply. Environ. Exp. Biol. 9: 83–90.

Kik C. 1989. Ecological genetics of salt resistance in the clonal perennial, Agrostis stolonifera L. New Phytol. 113: 453–458.

Kikovska M., Kalemba D., Dlugaszewska J., Thiem B. 2020. Chemical composition of essential oils from rare and endangered species – Eryngium maritimum L. and E. alpinum L. Plants 9: 417.

Köner C. 2016. Plant adaptations to cold climates [version 1, peer review: 2 approved]. F1000Research 5(F1000Faculty Rev): 2769.

Krause-Jensen D., Gundersen H., Björk M., Gullström M., Dahl M., Asplund M.E., Boström C., Holmer M., Banta G.T., Graversen A.E.L., Pedersen M.F., Bekkby T., Frigstad H., Skjellum S.F., Thormar J., Gyldenkærne S., Howard J., Pidgeon E., Ragnarsdóttir S.B., Mols-Mortensen A., Hancke K. 2022. Nordic blue carbon ecosystems: status and outlook. Front. Marine Sci. 9: 847544.

Ksouri R., Ksouri W.M., Jallali I., Debez A., Magné C., Hiroko I., Abdelly C. 2012. Medicinal halophytes: potent source of health promoting biomolecules withmedical, nutraceutical and food applications. Crit. Rev. Biotechnol. 32: 289–326.

Ksouri R., Megdiche W., Falleh H., Trabelsi N., Boulaaba M., Smaoui A., Abdelly C. 2008. Influence of biological, environmental and technical factors on phenolic content and antioxidant activities of Tunisian halophytes. C. R. Biol. 331: 865–873.

Kuiper P.J.C. 1978. Mechanisms of adaptation to physical and chemical factors. In: Freysen A.H.J, Woldendrop J.W. (Eds.) Structure and Functioning of Plant Populations. North-Holland Publishing Company, 215–236.

Łabuz T.A. 2015. Environmental impacts – coastal erosion and coastline changes. In: The BACC II Author Team (Eds.) Second Assessment of Climate Change for the Baltic Sea Basin. Regional Climate Studies. Springer, Cham, pp. 381–396.

Lakshmi A. 2021. Coastal ecosystem services & human wellbeing. Indian J. Med. Res. 153: 382–387.

Lambracht E., Westberg E., Kadereit J.W. 2007. Phylogeographic evidence for the postglacial colonization of the North and Baltic Sea coasts from inland glacial refugia by Triglochin maritima L. Flora 202: 79–88.

Lamela M., Cadavid I., Calleja J.M. 1986. Effects of Lythrum salicaria extracts on hyperglycemic rats and mice. J. Ethnopharmacol. 15: 153–160.

Lee J.I., Kim I.-H., Choi Y.H., Kim E.-Y., Nam T.-J. 2014. PTP1 B inhibitory effect of alkyl p-coumarates from Calystegia soldanella. Nat. Prod. Commun. 9: 1585–1588.

Lee J.A., Ignaciuk R. 1985. The physiological ecology of strandline plants. Vegetatio 62: 319–326.

Lopes A., Rodrigues M.J., Pereira C., Oliveira M., Barreira L., Varela J., Trampetti F., Custódio L. 2016. Natural products from extreme marine environments: Searching for potential industrial uses within extremophile plants. Industr. Crops Prod. 94: 299–307.

Lowry D.B., Hall M.C., Salt D.E., Willis J.H. 2009. Genetic and physiological basis of adaptive salt tolerance divergence between coastal and inland Mimulus guttatus. New Phytol. 183: 776–788.

Łuczaj, L. Pieroni A., Tardío J., Pardo-de-Santayana M., Sóukand R., Svanberg I., Kalle R. 2012. Wild food plant use in 21st century Europe: the disappearance of old traditions and the search for new cuisines involving wild edibles. Acta Soc. Bot. Polon. 81: 359–370.

Mancuso M. 2020. The antibacterial activity of Mentha. In: Akram M., Ahmad R.S. (Eds.) Herbs and Spices. IntechOpen, pp. 83–92.

Marcenò C., Guarino R., Loidi J., Herrera M., Isermann M., Knollová I., Tichý L., Tzonev R.T., Acosta A.T.R., FitzPatrick Ú., Iakushenko D., Janssen J.A.M., Jiménez-Alfaro B., Kącki Z., Keizer-Sedláková I., Kolomiychuk V., Rodwell J.S., Schaminée J.H.J., Šilc U., Chytrý M. 2018. Classification of European and Mediterranean coastal dune vegetation. Appl. Veget. Sci. 21: 533–559.

Marcenò C., Danihelka J., Dziuba T., Willner W., Chytrý M. 2024. Nomenclatural revision of the syntaxa of European coastal dune vegetation. Veget. Classific. Survey 5: 27–37.

Mason N. 2014. Can plant trait research become a serious science? In: Mucina L., Price J.N., Kalwij J.M. (Eds.) Biodiversity and Vegetation: Patterns, Processes, Conservation. Kwongan Foundation, Perth, pp. 45–46.

Maxted N., Scholten M., Codd R., Ford-Lloyd B. 2007. Creation and use of a national inventory of crop wild relatives. Biol. Conserv. 140: 142–159.

Morales P., Ferreira I.C.F.R., Carvalho A.M., Sánchez-Mata M.C., Cámara M., Fernández-Ruiz V., Pardo-de-Santayana M., Tardío J. 2014. Mediterranean non-cultivated vegetables as dietary sources of compounds with antioxidant and biological activity. LWT Food Sci. Technol. 55: 389–396.

Mucina L., Bültman H., Dierßen K., Theurillat J.-P., Raus T., Čarni A., Šumberová K., Willner W., Dengler J., García R.G., Chytrý M., Hájek M., Di Pietro R., Iakushenko D., Pallas J., Daniëls F.J.A., Bergmeier E., Guerra A.S., Ermakov N., Valachovič M., Schaminée J.H.J., Lysenko T., Didukh Y.P., Pignatti S., Rodwell J.S., Capelo J., Weber H.E., Solomeshch A., Dimopoulos P., Aguiar C., Hennekens S.M., Tichý L. 2016. Vegetation of Europe: hierarchical floristic classification system of vascular plant, bryophyte, lichen, and algal communities. Appl. Veget. Sci. 19: 3–264.

Nacry P., Bouguyon E., Gojon A. 2013. Nitrogen acquisition by roots: physiological and developmental mechanisms ensuring plant adaptation to a fluctuating resource. Plant Soil 370: 1–29.

Normand S., Ricklefs R.E., Skov F., Bladt J., Tackenberg O., Svenning J.-C. 2011. Postglacial migration supplements climate in determining plant species ranges in Europe. Proc. Royal Soc. B 278: 3644–3653.

Ohga K., Muroi M., Hayakawa H., Yokoyama J., Ito K., Tebayashi S.-I., Arakawa R., Fukuda T. 2013. Coastal adaptation of Adenophora triphylla var. japonica (Campanulaceae). Amer. J. Plant Sci. 4: 29005.

Oliveira M., Hoste H., Custódio L. 2021. A systematic review on the ethnoveterinary uses of mediterranean salt-tolerant plants: Exploring its potential use as fodder, nutraceuticals or phytotherapeutics in ruminant production. J. Enthnopharm. 267: 113464.

Owen N.W., Kent M., Dale M.P. 2004. Plant species and community responses to sand burial on the machair of the Outer Hebrides, Scotland. J. Veget. Sci. 15: 669–678.

Panta S., Flowers T., Lane P., Doyle R., Haros G., Shabala S. 2014. Halophyte agriculture: Success stories. Environ. Exp. Bot. 107: 71–83.

Passos I., Figueiredo A., Almeida A.M., Ribeiro M.M. 2024. Uncertainties in plant species niche modeling under climate change scenarios. Ecologies 5: 402–419.

Pätsch R., Schaminée J.H.J., Janssen J.A.M., Hennekens S.M., Bruchmann I., Jutila H., Mesiert A., Bergmeier E. 2019. Between land and sea – a classification of saline and brackish grasslands of the Baltic Sea coast. Phytocoenologia 49: 319–348.

Petropoulos S.A., Karkanis A., Martins N., Ferreira I.C.F.R. 2018. Edible halophytes of the Mediterranean basin: Potential candidates for novel food products. Trends Food Sci. Technol. 74: 69–84.

Peyrat J., Fichtner A. 2011. Plant species diversity in dry coastal dunes of the southern Baltic coast. Commun. Ecol. 12: 220–226.

Piernik A. 2012.Ecological Pattern of Inland Salt Marsh Vegetation in Central Europe, Nicolaus Copernicus University Press: Toruń, Poland.

Preislerová Z., Marcenò C., Loidi J. et al. 2024. Structural, ecological and biogeographical attributes of European vegetation alliances. Appl. Veget. Sci. 27: e12766.

Preston J.C., Sandve S.R. 2013. Adaptation to seasonality and the winter freeze. Front. Plant Sci. 4: 167.

Purmale L., Jēkabsone A., Andersone-Ozola U., Karlsons A., Osvalde A., Ievinsh G. 2022. Comparison of in vitro and in planta heavy metal tolerance and accumulation potential of different Armeria maritima accessions from a dry coastal meadow. Plants 11: 2104.

Rana V., Milke J., Gałczyńska,M. 2021. Inorganic and organic pollutatnts in Baltic Sea region and feasible circular economy perspectives for waste management: a review. In: Baskar C., Ramakrishna S., Baskar S., Sharma R., Chinnappan A., Sehrawat R. (Eds.) Handbook of Solid Waste Management. Springer Nature Singapore, https://doi.org/10.1007/978-981-15-7525-9_80-1.

Reeb G., Werckmann M. 2005. First performance data on the use of two pilot-constructed wetlands for highly loaded non-domestic sewage. In: Vymazal J. (Ed.) Constructed Wetlands: Nutrients, Metals and Management. Backhuys Publishers, Leiden, The Netherlands, pp. 43–51.

Remke E., Brouwer E., Kooijman A., Blindow I., Esselink H., Roelofs J.G.M. 2009. Even low to medium nitrogen deposition impacts vegetation of dry, coastal dunes around the Baltic Sea. Environ. Pollut. 157: 792–800.

Ritsema C.J., Dekker L.W. 1994. Soil moisture and dry bulk density patterns in bare dune sands. J. Hydrol. 154: 107–131.

Rönnbäck P., Kautsky N., Pihl L., Troell M., Söderqvist T., Wennhage H. 2007. Ecosystem goods and services from Swedish coastal habitats: identification, valuation, and implications of ecosystem shifts. AMBIO 36: 534–544.

Rozema J., Rozema-Dijst E., Freijsen A.H.J., Huber J.J.L. 1978. Population differentiation within Festuca rubra L. with regard to soil salinity and soil water. Oecologia 34: 329–341.

Rubinigg M., Elzenga J.T.M., Stulen I. 2002. Effects of NaCl salinity on nitrate uptake and partitioning of N and C in Festuca rubra L. in relation to growth rate. Phyton 42: 251–267.

Rubio Teso M.L., Álvarez Muñiz C., Gaisberger H., Kell S., Lara-Romero C., Magos Brehm J., Maxted N., Iriondo J.M. 2020. In situ plant genetic resources in Europe: crop wild relatives. Farmer’s Pride: Networking, Partnerships and Tools to Enhance in situ Conservation of European Genetic Resources. CGIAR, Montpellier, 134 p.

Ruņģis D.E., Andersone-Ozola U., Jēkabsone A., Ievinsh G. 2023. Genetic diversity and structure of Latvian Trifolium fragiferum populations, a crop wild relative legume species, in the context of the Baltic Sea region. Diversity 15: 473.

Russell P.J., Flowers T.J., Hutchings M.J. 1985. Comparison of niche breadths and overlaps of halophytes on salt marshes of differing diversity. Vegetatio 61: 171–178.

Samsone I., Ievinsh G. 2018. Different plant species accumulate various concentration of Na+ in a sea-affected coastal wetland during a vegetation season. Environ. Exp. Biol. 16: 117–127.

Samuel P., Kumar V.J., Dhayalan D.R., Amirtharaj K., Sudarmani D.N.P. 2017. Bioprospecting of Salicornia europaea L. a marine halophyte and evaluation of its biological potential with special reference to anticancer activity. J. Pharma. Pharma. Sci. 2: 138.

Sánchez-Faure A., Calvo M.M., Pérez-Jiménez J., Martín-Diana A.B., Rico D., Montero M.P., Gómez-Guillén M.C., López-Caballero M.E., Martinéz-Alvarez O. 2020. Exploring the potential of common iceplant, seaside arrowgrass and sea fennel as edible halophytic plants. Food Res. Int. 137: 109613.

Santoro R., Jucker T., Prisco I., Carboni M., Battisti C., Acosta A.T.R. 2012. Effects of trampling limitation on coastal dune plant communities. Environ. Manage. 49: 534–542.

Shabala S., Wu H., Bose J. 2015. Salt stress sensing and early signalling events in plant roots: Current knowledge and hypothesis. Plant Sci. 241: 109–119.

Sharma R., Wungrampha S., Singh V., Pareek A., Sharma M.K. 2016. Halophytes as bioenergy crops. Front. Plant Sci. 7: 1372.

Shen X., Dai M., Yang J., Sun L., Tan X., Peng C., Ali I., Naz I. 2022. A critical review on the phytoremediation of heavy metals from environment: Performance and challenges. Chemosphere 291: 132979.

Strandmark A., Bring A., Cousins S.A.O., Destouni G., Kautsky H., Kolb G., de la Torre-Castro M., Hambäck P.A. 2015. Climate change effects on the Baltic Sea borderland between land and sea. AMBIO 44: S28–S38.

Svanberg I., Ægisson S. 2012. Edible wild plant use in the Faroe Islands and Iceland. Acta Soc. Bot. Polon. 81: 233–238.

Tardío J., Pardo-de-Santayana M., Morales R. 2006. Ethnobotanical review of wild edible plants in Spain. Bot. J. Linn. Soc. 152: 27–71.

Tichý L. et al. 2023. Ellenberg-type indicator values for European vascular plant species. J. Veget. Sci. 34: e13168.

Tiku B.L., Snaydon R.W. 1971. Salinity tolerance within the grass species Agrostis stolonifera L. Plant Soil 35: 421–431.

Türkan I., Demiral T. 2009. Recent developments in understanding salinity tolerance. Environ. Exp. Bot. 6: 2–9.

Tyler G. 1969. Regional aspects of Baltic shore-meadow vegetation. Vegetatio 19: 60–86.

Tyler T., Herbertsson L., Olofsson J., Olssom P.A. 2021. Ecological indicator and traits values for Swedish vascular plants. Ecol. Indic. 120: 106923.

van der Maarel E. 1981. Fluctuations in a coastal dune grassland due to fluctuations in rainfall: Experimental evidence. Vegetatio 47: 259–265.

Vehmaa A., Lanari M., Jutila H., Mussaari M., Pätsch R., Telenius A., Banta G., Eklöf J., Jensen K., Krause-Jensen D., Quintana C.O., von Numers M., Boström C. 2024. Harmonization of Nordic coastal marsh habitat classification benefits conservation and management. Ocean Coastal Manage. 252: 107104.

Vélez-Martín A., Gavy A.J., Luque C.J., Castellanos E.M. 2020. Disentangling elevation, annual flooding regime and salinity as hydrochemical determinants of halophyte distribution in non-tidal saltmarsh. Ann. Bot. 126: 277–288.

Ventura Y., Myrzabayeva M., Alikulov Z., Cohen S., Shemer Z., Sagi M. 2013. The importance of iron supply during repetitive harvesting of Aster tripolium. Funct. Plant Biol. 40: 968–976.

Ventura Y., Sagi M. 2013. Halophyte crop cultivation: The case for Salicornia and Sarcocornia. Environ. Exp. Bot. 92: 144–153.

Vestegaard P. 2000. Strandenge – en beskyttet maturtype. Miljø- og Energiministeriet, Skov- og Naturstyrelsen, København, Denmark.

Vining K.J., Hummer K.E., Bassil N.V., Lange B.M., Khoury C.K., Carver D. 2020. Crop wild relatives as germplasm resource for cultivar improvement in mint (Mentha L.). Front. Plant Sci. 11: 1217.

Vining K.J., Pandelova I., Hummer K., Bassil N., Contreras R., Neill K., Chen H., Parrish A.N., Lange B.M. 2019. Genetic diversity survey of Mentha aquatica L. and Mentha suaveolens Ehrh., mint crop ancestors. Genet. Resour. Crop Evol. 66: 825–845.

von Numers M. 2011. Sea shore plants of the SW archipelago of Finland – distribution patterns and long-term changes during the 20th century. Ann. Bot. Fennici 48: 1–46.

Wang L., Wang X., Jiang L., Zhang K., Tanveer M., Tian C., Zhao Z. 2021. Reclamation of saline soil by planting annual euhalophyte Suaeda salsa with drip irrigation: A three-year field experiment in arid northwestern China. Ecol. Eng. 159: 106090.

Westberg E., Kadereit J.W. 2009. The influence of sea currents, past disruption of gene flow and species biology on the phylogeographical structure of coastal flowering plants. J. Biogeogr. 36: 1398–1410.

White A.C., Colmer T.D., Cawthray G.R., Hanley M.E. 2014. Variable response of three Trifolium repens ecotypes to soil flooding by seawater. Ann. Bot. 114: 347–355.

Whittaker R.H. 1975. Communities and Ecosystems. 2nd Ed. Macmillan Publishing, New York, USA.

Yando E.S., Jones S.F., James W.R., Colombano D.D., Montemayor D.I., Nolte S., Raw J.L., Ziegler S.L., Chen L., Daffonchio D., Fusi M., Rogers K., Sergienko L. 2023. An integrative salt marsh conceptual framework for global comparison. Limnol. Oceanogr. Lett. 8: 830–849.

Yura H., Ogura A. 2006. Sandblasting as a possible factor controlling the distribution of plants on a coastal dune system. Plant Ecol. 185: 199–208.

Yurdakok B., Baydan E. 2013. Cytotoxic effects of Eryngium kotschyi and Eryngium maritimum on Hep2, HepG2, Vero and U138 MG cell lines. Pharma. Biol. 51: 1579–1585.

Zandalinas S.I., Mittler R., Balfagón D., Arbona V., Gómez-Cadenas A. 2018. Plant adaptations to the combination of drought and high temperatures. Physiol. Plant. 162: 2–12.

Zhang H., Mittal N., Leamy L.J., Barazani O., Song B.-H. 2017. Back into the wild – Apply untapped genetic diversity of wild relatives for crop improvement. Evol. Applic. 10: 5–24.

Zurell D., Zimmermann N.E., Brun P. 2024. The niche through time: Considering phenology and demographic stages in plant distribution models. J. Ecol. 112: 1926–1939.

Downloads

Published

2024-12-19

How to Cite

Ievinsh, G. (2024). Creating a conceptual framework for analysis of vascular plant diversity in a coastal landscape: functional aspects and ecosystem services for plants at the Baltic Sea. Environmental and Experimental Biology, 22(4), 201-244. https://doi.org/10.22364/eeb.22.19