Variation in olive phenolics and antioxidant activity: influence of variety, location, and Bactrocera oleae attack

Authors

  • Amina Belmahdi Laboratory of Natural Sciences and Materials, Institute of Natural and Life Sciences, Abdelhafid Bousouf University Center, Mila, BP N°26 RP Mila 43000 Algeria
  • Hakima Belattar Laboratory of Natural Sciences and Materials, Institute of Natural and Life Sciences, Abdelhafid Bousouf University Center, Mila, BP N°26 RP Mila 43000 Algeria
  • Sara Himour Laboratory of Natural Sciences and Materials, Institute of Natural and Life Sciences, Abdelhafid Bousouf University Center, Mila, BP N°26 RP Mila 43000 Algeria
  • Ahlem Karbab Laboratory of Applied Biochemistry, Faculty of Natural and Life Sciences, Ferhat Abbas University, Setif-1, 19000, Algeria
  • Noureddine Charef Laboratory of Applied Biochemistry, Faculty of Natural and Life Sciences, Ferhat Abbas University, Setif-1, 19000, Algeria

DOI:

https://doi.org/10.22364/eeb.22.20

Keywords:

Bactrocera oleae, environmental factors, Olea europaea L., olive cultivars

Abstract

The olive tree (Olea europaea L.) holds significant economic importance, especially in the Mediterranean region, including Algeria, where diverse olive cultivars thrive due to the heterogeneous climate. This study presents a comparative analysis of phenolic and antioxidant properties in olive fruits from two Algerian cultivars, ‘Chemlal’ and ‘Sigoise’, focusing on the influence of different locations and varying attack rates of the olive fruit fly (Bactrocera oleae). Key biological parameters, including fruit weight, maturity index, and pest attack rates, alongside the content of phenolics, flavonoids, and condensed tannins were measured. Antioxidant activity was evaluated by measuring free radical scavenging, total antioxidant capacity, and ferric-reducing power. Significant variation in fruit characteristics and insect susceptibility between the two cultivars and locations was found. Cv. ‘Sigoise’ exhibited greater fruit weight but higher vulnerability to Bactrocera oleae attacks than cv. ‘Chemlal’. Fruits of cv. ‘Chemlal’ from Ain Arnat showed greater insect attack resistance and higher condensed tannin content. Antioxidant assays revealed that cv. ‘Chemlal’, especially from Ain Azel, had superior free radical scavenging and ferric-reducing ability, despite its lower phenolics content, indicating a robust antioxidant profile. This study demonstrates the potential of selecting and cultivating specific olive cultivars to optimize their health-promoting benefits and resistance to biotic stress. This underlines the need for tailored agronomic practices that consider genetic, environmental, and pest management factors for enhanced productivity and quality.

References

Abhishek J., Ojha V., Kumar G., Karthik L., Bhaskara Rao K.V. 2013. Phytochemical composition and antioxidant activity of methanolic extract of Ficus benjamina (Moraceae) leaves. Res. J. Pharm. Technol. 6: 1184–1189.

Acila S., Saker M.L., Daddi Bouhoun M., Taamalli A., Ould El Hadj M.D., Zarrouk M. 2017. An alternative assessment of olive (Olea europaea L.) cultivars adaptation in the Mediterranean Saharan context of Algeria. J. Appl. Hortic. 19: 51–57.

Amari S., Karbab A., Charef N., Arrar L., Mubarak M.S. 2023. Anti-urolithiatic, antibacterial, anti-inflammatory and analgesic effects of Erica arborea flowers and leaves hydromethanolic extracts: An ethnopharmacological study. Saudi J. Biol. Sci. 30: 103785.

Atrouz K., Bousba R., Marra F.P., Marchese A., Conforti F.L., Perrone B., Harkat H., Salimonti A., Zelasco. 2021. Algerian olive germplasm and its relationships with the Central-Western Mediterranean varieties contribute to clarify cultivated olive diversification. Plants 10: 678.

Benavente-García O., Castillo J., Lorente J., Ortuño A., Del Río J.A. 2000. Antioxidant activity of phenolics extracted from Olea europaea L. leaves. Food Chem. 68: 457–462.

Calderón-Oliver M., Ponce-Alquicira E. 2018. Fruits: A source of polyphenols and health benefits. In: Grumezescu A.M., Holban A.M. (Eds.) Natural and Artificial Flavoring Agents and Food Dyes. Elsevier, pp. 189–228.

Cheng Z., Zhan M., Yang Z., Zumstein K., Chen H., Huang Q. 2017. The major qualitative characteristics of olive (Olea europaea L.) cultivated in Southwest China. Front. Plant Sci. 8: 599.

Dekdouk N., Malafronte N., Russo D., Frraone I., De Tommasi N., Ameddah S., Severino L., Milella L. 2015. Phenolic compounds from Olea europaea L. possess antioxidant activity and inhibit carbohydrate metabolizing enzymes in vitro. J. Evid. Based Complement. Alternat. Med. 8: 684925.

Djelloul C.E.B., Amrani S.M., Rovellini P., Chenoune R. 2020. Phenolic compounds and fatty acids content of some West Algerian olive oils. Comun. Sci. 11: 2177–5133.

Francini A., Pintado M., Manganaris G., Ferrante A. 2020. Bioactive compounds biosynthesis and metabolism in fruit and vegetables. Front. Plant Sci. 11: 129.

Ghanbari R., Anwar F., Alkharfy K.M., Gilani A.-H., Saari N. 2012. Valuable nutrients and functional bioactives in different parts of olive (Olea europaea L.) – A review. Int. J. Mol. Sci. 13: 3291–3340.

Gitonga H.W., Kyamanywa S., Arusei P., Lukanda M.M., Edema R., Dramadri I.O. 2022. Genotype × environment interaction influences secondary metabolites in cowpeas infested by flower bud thrips. Agronomy 12: 3210.

International Olive Council. 2011. Guide for the Determination of the Characteristics of Oil-Olives. COI/OH/Doc. No 1. Príncipe de Vergara, 154 – 28002 Madrid, Spain.

Issaad F.Z., Abdessemed A., Bouhedjar K., Bouyahmed H., Derdour M., Ouffroukh K., Fellak A., Dems M.A.S., Chihoub S., Bechlem R., Mahrouk A., Houasnia M., Belaidi A., Moumed K., Sebai Z., Saidani F., Akmouche H. 2024. Classification of Algerian olive oils: Physicochemical properties, polyphenols and fatty acid composition combined with machine learning models. J. Food Compos. Anal. 125: 105812.

Karakoyun S., Akça Uçkun A. 2022. Susceptibility of olive cultivars to olive fly (Bactrocera oleae) and parameters that play a role in olive fly cultivar selection. J. Entom. Zool. Stud. 11: 185-193.

Karbab A., Charef N., Arrar L. 2019. Phenolic contents, in vitro antioxidant, and in vivo anti-inflammatory studies of aqueous extract from Pituranthos scoparius (Coss. & Dur.) growing in Algeria. Iranian J. Pharmacol. Therapeut. 17: 1–7.

Karbab A., Charef N., Zarga M.H.A., Qadri M.I., Mubarak M.S. 2021. Ethnomedicinal documentation and anti-inflammatory effects of n-butanol extract and of four compounds isolated from the stems of Pituranthos scoparius: An in vitro and in vivo investigation. J. Ethnopharmacol. 267:113488.

Karbab A., Mokhnache K., Arrar L., Baghiani A., Khennouf S., Charef N. 2020a. Fractionation, phytochemical screening and free radical scavenging capacity of different subfractions from Pituranthos scoparius roots. J. Drug Deliv. Therapeut. 10: 133–136.

Karbab A., Mokhnache K., Arrar L., Charef N. 2020b. Total phenolic contents and antioxidant capacity of aqueous extract from Pituranthos scoparius (Coss. & Dur.) growing in Algeria. J. Drug Deliv. Therapeut. 10: 125–127.

Kaul V., Shankar U., Khushu M. 2009. Bio-intensive integrated pest management in fruit crop ecosystem. In: Peshin R., Dhawan A.K. (Eds.) Integrated Pest Management: Innovation-Development Process. Springer, pp. 553–576.

Krishna K.V.V.S., Venkatesh B., Madhavi A., Padmavathi Devi B.V., Jaldi C.E., Sai Bhargavi D. 2019. Evaluation of antioxidant activity of Pancha Curnam: an Ayurvedic polyherbomineral formulation. Res. J.. Pharm. Technol. 12: 4841–4847.

Ljevar A., Ćurko N., Tomašević M., Radošević K., Gaurina Srček V., Kovačević Ganić K. 2016. Phenolic composition, antioxidant capacity, and in vitro cytotoxicity assessment of fruit wines. Food Sci. Biotechnol. 54: 145–155.

Ljevar R., Babić J., Šimić G. 2016. Cytotoxicity assessment of fruit wines. Food Technol. Biotechnol. 54: 145–155.

Mahhou A., Jermmouni A., Hadiddou A., Oukabli A., Mamouni A. 2014. Période de récolte et caractéristiques de l’huile d’olive de quatre variétés en irrigué dans la région de Meknès au Maroc. Revue Marocaine des Sciences Agronomiques et Vétérinaires 2: 5–15.

Matos L.C., Cunha S.C., Amaral J.S., Pereira J.A., Andrade P.B., Seabra R.M., Oliveira B.P.P. 2007. Chemometric characterization of three varietal olive oils (cvs. Cobrançosa, Madural and Verdeal Transmontana) extracted from olives with different maturation indices. Food Chem. 102: 406–414.

Medjkouh L., Tamendjari A., Alves R.C., Araújo M., Oliveira M.B.P.P. 2016. Effect of Bactrocera oleae on phenolic compounds and antioxidant and antibacterial activities of two Algerian olive cultivars. Food Funct. 7: 4372–4378.

Moura de Melo L.F., Aquino-Martins V.G.Q., Da Silva A.P., Rocha H.A.O., Scortecci K.C. 2023. Biological and pharmacological aspects of tannins and potential biotechnological applications. Food Chem. 414: 135645.

Ozturk M., Altay V., Gönenç T.M., Unal B.T., Efe R., Akçiçek E., Bukhari A. 2021. An overview of olive cultivation in Turkey: Botanical features, eco-physiology, and phytochemical aspects. Agronomy 11: 295.

Pavithra S., Banu N. 2017. Free radical scavenging activity and total antioxidant capacity of tin chlorophyllin from Morinda citrifolia L. Res. J. Pharm. Technol. 10: 453–455.

Rocchetti G., Senizza B., Giuberti G., Montesano D., Trevisan M., Lucini L. 2020. Metabolomic study to evaluate the transformations of extra-virgin olive oil’s antioxidant phytochemicals during in vitro gastrointestinal digestion. Antioxidants 9: 302.

Rondoni G., Mattioli E., Giannuzzi V.A., Chierici E., Betti A., Natale G., Petacchi R., Famiani F., Natale A., Conti E. 2024. Evaluation of the effect of agroclimatic variables on the probability and timing of olive fruit fly attack. Front. Plant Sci. 15: 1401669.

Rudrapal M., Khairnar, S.J., Khan J., Bin Dukhyil A., Ansari M.A., Alomary M.N., Alshabrmi F.M., Palai S., Deb P.K., Devi R.L. 2022. Dietary polyphenols and their role in oxidative stress-induced human diseases: insights into protective effects, antioxidant potentials, and mechanism(s) of action. Front. Pharmacol. 13: 806470.

Salem M.Z.M., Mosa K.A., Al-Majed A.A. 2020. Synergy between bioactive components in natural antioxidants. Antioxidants 9: 807.

Salem M.A., Perez de Souza L., Serag A., Fernie A.R., Farag M.A., Ezzat S.M., Alseekh S. 2020. Metabolomics in the context of plant natural products research: from sample preparation to metabolite analysis. Metabolites 10: 37.

Servili M., Selvaggini R., Esposto S., Taticchi A., Montedoro G., Morozzi G. 2004. Health and sensory properties of virgin olive oil hydrophilic phenols: agronomic and technological aspects of production that affect their occurrence in the oil. J. Chromatogr. A 1054: 113–127.

Tekeshwar K., Vishal J. 2016. Phytochemical screening, phenolic, flavonoid, carotenoid contents and antioxidant activity of folkloric Memecylon edule Roxb. Res. J. Pharm Technol. 9: 1547–1551.

Valenčič V., Butinar B., Podgornik M., Bucar-Miklavcic M. 2021. The effect of olive fruit fly Bactrocera oleae (Rossi) infestation on certain chemical parameters of produced olive oils. Molecules 26: 95.

Wang X., Johnson M.W., Yokoyama V.Y. 2009. Larger olive fruit size reduces the efficiency of Psyttalia concolor as a parasitoid of the olive fruit fly. Biol. Contr. 49: 45–51.

Zargoosh Z., Ghavam M., Bacchetta, G., Tavili A. 2019. Effects of ecological factors on the antioxidant potential and total phenol content of Scrophularia striata Boiss. Sci. Rep. 9: 16021.

Downloads

Published

2024-12-19

How to Cite

Belmahdi, A., Belattar, H., Himour, S., Karbab, A., & Charef, N. (2024). Variation in olive phenolics and antioxidant activity: influence of variety, location, and Bactrocera oleae attack. Environmental and Experimental Biology, 22(4), 245-252. https://doi.org/10.22364/eeb.22.20