Effect of incremental salinity on survival and behaviour of zebrafish (Danio rerio)

Authors

  • Nabajit Mondal Department of Zoology, School of Sciences, Kalyani Regional Centre – Netaji Subhas Open University (NSOU), Kalyani, West Bengal, India
  • Jaspreet Kaur Post-graduate Zoology Study Centre – NSOU, Durgapur Government College, Durgapur, West Bengal, India
  • Anulekha Bal Post-graduate Zoology Study Centre – NSOU, RPM College, Uttarpara, Hoogly, West Bengal, India
  • Anirban Ghosh Department of Zoology, School of Sciences, Kalyani Regional Centre – Netaji Subhas Open University (NSOU), Kalyani, West Bengal, India

DOI:

https://doi.org/10.22364/eeb.22.16

Keywords:

behaviour, LC50, NaCl, salinity, stress, zebrafish

Abstract

Freshwater ecosystems in coastal regions are occasionally flooded with saline water due to tidal, seasonal and catastrophic water movements, thereby affecting physiology and behaviour of freshwater fishes. The aim of the present study was to determine the tolerance limit of salinity in zebrafish as a freshwater fish model, to characterize and quantify their behavioural response under mild to high incremental salinity exposure. Wild-type zebrafish (Danio rerio) individuals were maintained and exposed from fresh water to increasing NaCl concentration up to 20 g L–1 with a repeated exposure schedule for 96 h. Observation was made per tank for their mortality and for cumulative behavioural patterns under defined time frames. The estimated LC50 value was 14.122 g L–1 NaCl. Abrupt shifts of behavioural expression were found from 10 g L–1 of NaCl, with predominant stress movements followed by aggression and fighting as well as diminishing feeding and playing movements. The incremental salinity concentration and exposure time both were found to control the key behavioural indicators in a defined pattern.

References

Abd-Elhamid H.F., Javadi A.A. 2008. An investigation into control of saltwater intrusion considering the effects of climate change and sea level rise. In: Proceedings of the 20th Salt Water Intrusion Meeting, 23 – 27 June 2008, Naples, USA, pp. 4–7.

Akter R., Sakib M., Rahman M., Sumaiya S., Haque A., Rahman M., Islam M.R. 2016. Climatic and cyclone induced storms surge impact on salinity intrusion along the Bangladesh coast. In: 6th International Conference on the Application of Physical Modelling in Coastal and Port Engineering and Science. University of Ottawa, Canada, pp. 1–8.

Ali S.A., Khatun R., Ahmad A., Ahmad S.N. 2020. Assessment of cyclone vulnerability, hazard evaluation and mitigation capacity for analyzing cyclone risk using gis technique: a study on Sundarban biosphere reserve, India. Earth Syst. Environ. 4: 71–92. DOI: https://doi.org/10.1007/s41748-019-00140-x

Alonso A., Valle-Torres G. 2018. Feeding behaviour of an aquatic snail as a simple endpoint to assess the exposure to cadmium. Bull. Environ. Contamin. Toxicol. 100: 82–88. DOI: https://doi.org/10.1007/s00128-017-2230-3

Asbridge E., Lucas R., Accad A., Dowling R. 2015. Mangrove response to environmental change predicted under varying climates: case studies from Australia. Curr. Forest Rep. 1: 178–194. DOI: https://doi.org/10.1007/s40725-015-0018-4

Audira G., Sampurna B.P., Juniardi S., Liang S.T., Lai Y.H., Hsiao C.D. 2018. A versatile setup for measuring multiple behavior endpoints in zebrafish. Inventions 3: 75. DOI: https://doi.org/10.3390/inventions3040075

Audira G., Siregar P., Strungaru S.A., Huang J., Hasio C.D. 2020. Which zebrafish strains are suitable to perform behavioural studies? A comprehensive comparison by phenomic approach. Biology 9: 200. DOI: https://doi.org/10.3390/biology9080200

Banerjee K. 2013. Decadal change in the surface water salinity profile of Indian Sundarban: A potential indicator of climate change. J. Marine Sci. Res. Dev. 11: 002. DOI: https://doi.org/10.4172/2155-9910.S11-002

Barreto R.E., Volpato G.L., de Brito Faturi C., Giaquinto P.C., Gonçalves de Freitas E., Fernandes de Castilho M. 2009. Aggressive behaviour traits predict physiological stress responses in Nile tilapia (Oreochromis niloticus). Marine Freshwater Behav. Physiol. 42: 109–118. DOI: https://doi.org/10.1080/10236240902850392

Bartolini T., Butail S., Porfiri M. Temperature influences sociality and activity of freshwater fish. Environ. Biol. Fishes 98: 825– 832. DOI: https://doi.org/10.1007/s10641-014-0318-8

Beatty S.J., Morgan D.L., Rashnavadi M., Lymbery A.J. 2011. Salinity tolerances of endemic freshwater fishes of south western Australia: implication for conservation in a biodiversity hotspot. Marine Freshwater Res. 62: 91–100. DOI: https://doi.org/10.1071/MF10100

Brammer H. 2014. Bangladesh’s dynamic coastal regions and sea level rise. Climate Risk Manage. 1: 51–62. DOI: https://doi.org/10.1016/j.crm.2013.10.001

Brown S., Nicholls R.J., Lazar A.N., Hornby D.D., Hill C., Hazra S., Addo K.A., Haque A., Caesar J., Tompkins E. 2018. What are the implications of sea- level rise for a 1.5, 2 and 3 °C rise in global mean temperature in vulnerable deltas? Reg. Environ. Change 18: 1829–1842. DOI: https://doi.org/10.1007/s10113-018-1311-0

Dasgupta S., Huq M., Khan Z.H., Ahmed M.M.Z., Mukherjee N., Khan M., Pandey K.D. 2010. Vulnerability of Bangladesh to cyclones in a changing climate: Potential damages and adaptation cost. Policy Research Working Paper 5280. The World Bank.

Dasgupta S., Huq M., Mustafa M.G., Sobhan M.I., Wheeler D. 2017. The impact of aquatic salinization on fish habitat and poor communities in a changing climate: evidence from South West coastal Bangladesh. Ecol. Econ. 139: 28–139. DOI: https://doi.org/10.1016/j.ecolecon.2017.04.009

Domenici P., Lefrancois C., Shingles A. 2007. Hypoxia and the antipredator behaviours of fishes. Philos. Trans. R. Soc. London B Biol. Sci. 362: 2105–2121. DOI: https://doi.org/10.1098/rstb.2007.2103

Eisenbeiser S., Serbe-Kamp É., Gage G.J., Marzullo T.C. 2022. Gills just want to have fun: can fish play games, just like us? Animals 12: 1684. DOI: https://doi.org/10.3390/ani12131684

Eraslan E., Castelhano-Carlos M. J., Amorim L., Soares-Cunha C., Rodrigues A.J., Sousa N. 2023. Home-cage behavior is impacted by stress exposure in rats. Front. Behav. Neurosci. 17: 1195011. DOI: https://doi.org/10.3389/fnbeh.2023.1195011

Farhana T., Haque F., Amin F.B., Zahangir M.M., Islam M.S. 2019. Developmental pliability in Zebrafish: an experimental enquiry of acute salinity stress on the early life of zebrafish. Aquacult. Rep. 14: 100198. DOI: https://doi.org/10.1016/j.aqrep.2019.100189

Gayathri R., Murty P.L.N., Bhaskaran P.K., Srinivasa Kumar T. 2016. A numerical study of hypothetical storm surge and coastal inundation for AILA cyclone in the Bay of Bengal. Environ. Fluid Mech. 16: 429–452. DOI: https://doi.org/10.1007/s10652-015-9434-z

Ghazy M.M.E.D., Habashy M.M., Kossa F.I., Mohammady E.Y. 2009. Effects of salinity on survival, growth and reproduction of the water flea, Daphnia magna. Nat. Sci. 7: 28–42.

Hoppe-Speer S.C., Adams J.B., Raj Karan A., Bailey D. 2011. The response of the red mangrove Rhizophora mucronate Lam. to salinity and inundation in South Africa. Aquat. Bot. 95: 71–76. Kalueff A.V., Gebhardt M., Stewart A.M., Cachat J.M., Brimmer M., Chawla J.S., Craddock C., Kyzar E.J., Roth A., Landsman S., Gaikwad, S. 2013. Towards a comprehensive catalog of zebrafish behavior 1.0 and beyond. Zebrafish 10: 70–86. DOI: https://doi.org/10.1089/zeb.2012.0861

Kantamaneni K., Panneer S., Krishnan A., Shekhar S., Bhat L. Rice

L. 2022. Appraisal of climate change and cyclone trends in Indian coastal states: a systematic approach towards climate action. Arab. J. Geosci. 15: 814.

Klein Z.A., Padow V.A., Romeo R.D. 2010. The effects of stress on play and home cage behaviours in adolescent male rats. Dev. Psychobiol. 52: 62–70. DOI: https://doi.org/10.1002/dev.20413

Leite T., Branco, P., Ferreira M.T., Santos J.M. 2022. Activity, boldness and schooling in freshwater fish are affected by river salinization. Sci. Total Environ. 819: 153046. DOI: https://doi.org/10.1016/j.scitotenv.2022.153046

Lopez L.K., Davis A.R., Wong M.Y. 2018. Behavioral interactions under multiple stressors: temperature and salinity mediate aggression between an invasive and a native fish. Biol. Invasions 20: 487–499. DOI: https://doi.org/10.1007/s10530-017-1552-8

Mitra A., Gangopadhyay A., Dube A., Schmidt A.C.K., Banerjee

K. 2009. Observed changes in water mass properties in the Indian Sundarbans (North Western Bay of Bengal) during 1980-2007. Curr. Sci. 97: 1445–1452.

Nitonye S., Uyi O. 2017. Analysis of marine pollution of ports and jetties in Rivers State, Nigeria. Open J. Marine Sci. 8: 114–135. Nunes B., Gaio A.R., Carvalho F., Guilhermino L. 2008. Behaviour and biomarkers of oxidative stress in Gambusia holbrooki after acute exposure to widely used pharmaceuticals and a

detergent. Ecotoxicol. Environ. Saety 71: 341–354.

Peterson M.S., Meador M.R. 1994. Effects of salinity on freshwater fishes in coastal plain drainages in the southeastern US. Rev. Fisher. Sci. 2: 95–121. DOI: https://doi.org/10.1080/10641269409388554

Pitcher T.J., Greenberg G., Haraway M.M. 1998. Shoaling and shoaling behaviour in fishes. In: Greenberg G., Hararway

M.M. (Eds.) Comparative Psychology: a Handbook. Garland,

New York, pp.748–760.

Priyatha C.V., Chitra K.C. 2018. Acute toxicity of triclosan on the native freshwater fish, Anabas testudineus (Bloch, 1792): behavioural alternations and histopathological lesions. Int. J. Life Sci. 6: 166–172.

Saha C.K. 2015. Dynamics of disaster-induced risk in south western coastal Bangladesh: an analysis on tropical cyclone Aila in 2009. Nat. Hazards 75: 727–754. DOI: https://doi.org/10.1007/s11069-014-1343-9

Saxena K., Chakraborty P., Chattarji S. 2021. The same stress has divergent effects on social versus asocial manifestations of anxiety-like behaviour over time. Stress 24: 474–480. DOI: https://doi.org/10.1080/10253890.2020.1855421

Seli D.A., Prendergast A., Ergun Y., Tyagi A., Taylor H. S. 2024. High NaCl concentrations in water are associated with developmental abnormalities and altered gene expression in zebrafish. Int. J. Mol. Sci. 25: 4104. DOI: https://doi.org/10.3390/ijms25074104

Shammi M., Rahman M.M., Islam M.A., Bodrud- Doza M., Zahid A., Akhter Y., Quaiyun S., Kurasaki M. 2017. Spatio-temporal assessment and trend analysis of surface water salinity in the coastal region of Bangladesh. Environ. Sci. Pollut. Res. 24: 14273–14290. DOI: https://doi.org/10.1007/s11356-017-8976-7

Sherif M.M., Singh V.P. 1999. Effect of climate change on sea water intrusion in coastal aquifers. Hydrol. Proc. 13: 1277–1287. DOI: https://doi.org/10.1002/(SICI)1099-1085(19990615)13:8<1277::AID-HYP765>3.0.CO;2-W

Sherin V.R., Durand F., Papa F., Islam, A.S., Gopalakrishna V.V., Khaki M., Suneel V. 2020. Recent salinity intrusion in the Bengal delta: Observations and possible causes. Contin. Shelf Res. 202: 104142. DOI: https://doi.org/10.1016/j.csr.2020.104142

Shivanna K.R. 2022. Climate change and its impact on biodiversity and human welfare. Proc. Indian Natl. Sci. Acad. 88: 160–171. DOI: https://doi.org/10.1007/s43538-022-00073-6

Sih A., Mathot K.J., Moiron M., Montiglio P.O., Wolf M., Dingemanse N. J. 2015. Animal personality and state- behaviour feedbacks: a review and guide for empiricists. Trends Ecol. Evol. 30: 50–60. DOI: https://doi.org/10.1016/j.tree.2014.11.004

Simmons J.A. 2012. Toxicity of major cations and anions (Na+, K+, Ca2+, Cl–, and SO42–) to a macrophyte and an alga. Environ. Toxicol. Chem. 31: 1370–1374. DOI: https://doi.org/10.1002/etc.1819

Sinha P.C., Rao Y.R., Dube S.K., Murthy C.R., Chatterjee A.K. 1999. Application of two turbulence closure schemes in the modelling of tidal currents and salinity in the Hooghly estuary. Estuar. Coast. Shelf Sci. 48: 649–663. DOI: https://doi.org/10.1006/ecss.1999.0478

Spence R., Gerlach G., Lawrence C., Smith C. 2008. The behaviour and ecology of the zebrafish, Danio rerio. Biol. Rev. 83: 13–34. Struewing K.A., Lazorchak J.M., Weaver P.C., Johnson B.R., Funk D.H., Buchwalter D.B. 2014. Part 2: Sensitivity comparisons of the mayfly Centroptilum triangulifer to Ceriodaphnia dubia and Daphnia magna using standard reference toxicants: NaCl, KCl, and CuSO4. Chemosphere 139: 597–603. DOI: https://doi.org/10.1016/j.chemosphere.2014.04.096

Tazkia A.R., Krien Y., Durand F., Testut L., Islam A.S., Papa F., Bertin X. 2017. Seasonal modulation M2 tide in the northern Bay of Bengal. Contin. Shelf Res. 137: 154–162. DOI: https://doi.org/10.1016/j.csr.2016.12.008

Tyree M., Clay N., Polaskey S., Entrekin S. 2016. Salt in our streams: even small sodium additions can have negative effect on detritivores. Hydrobiologia 775: 109–122. DOI: https://doi.org/10.1007/s10750-016-2718-6

Zidan E.M., Goma A.A., Tohamy H.G., Soliman M.M., Shukry M., 2022. Insight study on the impact of different salinity levels on behavioural responses, biochemical stress parameters and growth performance of African catfish (Clarias gariepinus). Aquacult. Res. 53: 2750–2759. DOI: https://doi.org/10.1111/are.15790

Downloads

Published

2024-12-19

How to Cite

Mondal, N., Kaur, J., Bal, A., & Ghosh, A. (2024). Effect of incremental salinity on survival and behaviour of zebrafish (Danio rerio). Environmental and Experimental Biology, 22(4), 167-177. https://doi.org/10.22364/eeb.22.16