Hydrothermal liquefaction: exploring feedstock for sustainable biofuel production
DOI:
https://doi.org/10.22364/eeb.22.13Keywords:
biomass, biofuels, hydrothermal liquefaction, renewable energyAbstract
A number of technological strategies utilizing various types of biomass for the production of hydrocarbons have been put forth but their energy intensive methods are a concern for improved efficiency of biofuel production. Hydrothermal liquefaction (HTL) has emerged as a promising and feasible technology towards utilization of lignocellulosic biomass. The suitability of different biomass feedstock for HTL is intricately tied to their macromolecular composition and process parameters. The comprehensive analysis of feedstock for hydrothermal liquefaction (HTL) signal towards the immense potential of various biomass feedstock, such as corn stover, Miscanthus, pine biomass, Spirulina, sugarcane bagasse, rice bran etc. in contributing significantly to renewable energy production. The study emphasizes that the composition of biomass is critical in influencing bio-oil yield during the HTL process. Biomass components like cellulose, hemicellulose, and lignin, each play distinct roles in determining the efficiency of conversion. Specifically, feedstock with higher cellulose and hemicellulose content, such as Miscanthus and sugarcane bagasse, demonstrate superior bio-oil yields. The analysis of proximate factors affecting HTL efficiency reveals that moisture content, ash content and high heating value (HHV) are pivotal in optimizing the process. In addition to composition and physical characteristics, the article underscores the significance of growth conditions and nutrient utilization in cultivating biomass feedstock. Integrating HTL with biomass cultivation can create a sustainable, closed-loop system where nutrients from the HTL process are recycled back into cultivation. Biomass offers a renewable energy alternative, however it also poses challenges related to land use and potential competition with food production. Sustainable practices, such as utilizing agricultural and forestry residues and optimizing collection as well as storage processes, can alleviate some of these concerns. By optimizing feedstock selection, process parameters, and integrating sustainable practices, HTL can play a decisive role in advancing biofuel production and contributing to a more sustainable energy future. The interplay between biomass composition, processing efficiency, environmental impacts, and economic feasibility is essential for realizing the full potential of HTL technology in the bio-economy. The current analysis sheds light on the relationship of bio-oil yield with macromolecular components including cellulose, hemicellulose, and lignin as well as process parameters like ash content, moisture content, higher heating value, fixed carbon and volatiles. Focusing on process optimization, this study embodies a closer analysis of literature aimed at defining optimum strategies for enhancement of HTL.
References
Acharjee T.C., Coronella C.J., Vasquez V.R. 2011. Effect of thermal pretreatment on equilibrium moisture content of lignocellulosic biomass. Bioresour. Technol. 102: 4849–4854.
Akhtar J., Amin N.A.S. 2011. A review on process conditions for optimum bio-oil yield in hydrothermal liquefaction of biomass. Renew. Sust. Energy Rev. 15: 1615–1624.
Alvarenga R.R., Rodrigues P.B., de Souza Cantarelli V., Zangeronimo M.G., da Silva Júnior J.W., da Silva L.R., dos Santos L.M., Pereira L.J. 2011. Energy values and chemical composition of Spirulina (Spirulina platensis) evaluated with broilers 1. Rev. Brasil. Zootec. 40: 992–996.
Alvira P., Tomás-Pejó E., Ballesteros M., Negro M.J. 2010. Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review. Bioresour. Technol. 101: 4851–4861.
Amissah J.G.N., Ellis W.O., Oduro I., Manful J.T. 2003. Nutrient composition of bran from new rice varieties under study in Ghana. Food Control 14: 21–24.
Anastasakis K., Biller P., Madsen R.B., Glasius M., Johannsen I. 2018. Continuous hydrothermal liquefaction of biomass in a novel pilot plant with heat recovery and hydraulic oscillation. Energies 11: 2695-2718
Anastasakis K., Ross A.B. 2011. Hydrothermal liquefaction of the brown macro-alga Laminaria saccharina: Effect of reaction conditions on product distribution and composition. Bioresour. Technol. 102: 4876–4883.
Balat M., Balat H., Öz C. 2008. Progress in bioethanol processing. Progr. Energy Combust. Sci. 34: 551–573.
Barrow C.J. 2012. Biochar: potential for countering land degradation and for improving agriculture. Appl. Geogr. 34: 21–28.
Bauen A., Berndes G., Junginger H.M., Londo M., Vuille F. 2012. Bioenergy – a Sustainable and Reliable Energy Source. IEA Bionergy: ExCo: 2009: 06.
Belkacemi K., Abatzoglou N., Overend R.P., Chornet E. 1991. Phenomenological kinetics of complex systems: mechanistic considerations in the solubilization of hemicelluloses following aqueous/steam treatments. Industr. Eng. Chem. Res. 30: 2416–2425.
Bhaskar T., Sera A., Muto A., Sakata Y. 2008. Hydrothermal upgrading of wood biomass: Influence of the addition of K2CO3 and cellulose/lignin ratio. Fuel 87: 2236–2242.
Bhutto A.W., Bazmi A.A., Zahedi G. 2011. Greener energy: Issues and challenges for Pakistan—Biomass energy prospective. Renew. Sust. Energy Rev. 15: 3207–3219.
Biller, P., & Ross, A. B. 2016. 17 - Production of biofuels via hydrothermal conversion. In: Luque R., Lin C.S.K., Wilson K., Clark J. (Eds.) Handbook of Biofuels Production. 2nd Ed. Woodhead Publishing, pp. 509–547.
Biller P., Ross A.B. 2011. Potential yields and properties of oil from the hydrothermal liquefaction of microalgae with different biochemical content. Bioresour. Technol. 102: 215–225.
Biller P., Roth A. 2018. Hydrothermal liquefaction: a promising pathway towards renewable jet fuel. In: Kaltschmitt M., Neuling U. (Eds.) Biokerosene: Status and Prospects. Springer, Berlin, Heidelberg, pp. 607–635.
Brebu M., Vasile C. 2010. A process for the manufacture of a precursor yarn. Cellul. Chem. Technol. 44: 353–363.
Bridgwater A.V. 2004. Biomass fast pyrolysis. Thermal Sci. 8: 21-49.
Brosse N., Dufour A., Meng X., Sun Q., Ragauska A. 2012. Miscanthus: a fast-growing crop for biofuels and chemicals production. Biofuels Bioprod. Bioref. 6: 580–598.
Castello D., Pedersen T.H., Rosendahl L.A. 2018. Continuous hydrothermal liquefaction of biomass: A critical review. Energies 11: 3165–3199.
Chagas B.M.E., Dorado C., Serapiglia M.J., Mullen C.A., Boateng A.A., Melo M.A.F., Ataíde C.H. 2016. Catalytic pyrolysis-GC/MS of Spirulina: Evaluation of a highly proteinaceous biomass source for production of fuels and chemicals. Fuel 179: 124–134.
Cheng J.J., Timilsina G.R. 2011. Status and barriers of advanced biofuel technologies: A review. Renew. Energy 36: 3541–3549.
Clarens A.F., Resurreccion E.P., White M.A., Colosi L.M. 2010. Environmental life cycle comparison of algae to other bioenergy feedstocks. Environ. Sci. Technol. 44: 1813–1819.
Cui L., Chaoyue L., Hui L., Wenke Z., Yning Zhang Y. 2023. Exergy transfer analysis of biomass and microwave based on experimental heating process. Sustainability 15: 388–399.
Demirbas, A. 2004. Combustion characteristics of different biomass fuels. Progr. Energy Combust. Sci. 30: 219–230.
Demirbas A. 2005. Potential applications of renewable energy sources, biomass combustion problems in boiler power systems and combustion related environmental issues. Progr. Energy Combust. Sci. 31: 171–192.
Eboibi B.E.-O., Lewis D.M., Ashman P.J., Chinnasamy S. 2014. Hydrothermal liquefaction of microalgae for biocrude production: Improving the biocrude properties with vacuum distillation. Bioresour. Technol. 174: 212–221.
Elliott, D. C., Biller, P., Ross, A. B., Schmidt, A. J., & Jones, S. B. 2015. Hydrothermal liquefaction of biomass: Developments from batch to continuous process. Bioresour. Technol. 178: 147–156.
Funda T., Fundova I., Gorzsás A., Fries A., Wu H.X. 2020. Predicting the chemical composition of juvenile and mature woods in Scots pine (Pinus sylvestris L.) using FTIR spectroscopy. Wood Sci. Technol. 54: 289–311.
Funke, A., & Ziegler, F. 2010. Hydrothermal carbonization of biomass: A summary and discussion of chemical mechanisms for process engineering. Biofuels Bioprod. Bioref. 4: 160–177.
Gao K., McKinley K.R. 1994. Use of macroalgae for marine biomass production and CO2 remediation: a review. J. Appl. Phycol. 6: 45–60.
García-Núñez, J. A., Pelaez-Samaniego, M. R., Garcia-Perez, M. E., Fuente, E., Olazar, M., & Garcia-Perez, M. 2016. Challenges and opportunities for bio-oil refining: A review. Energy Fuels 30: 7793–7818.
Garrote G., Domínguez H., Parajó J.C. 1999. Hydrothermal processing of lignocellulosic materials. Holz Roh- Werkstoff 57: 191–202.
Gnansounou E., Kenthorai Raman J. 2016. Life cycle assessment of algae biodiesel and its co-products. Appl. Energy 161: 300–308.
Gollakota A.R.K., Kishore N., Gu S. 2018. A review on hydrothermal liquefaction of biomass. Renew. Sust. Energy Rev. 81: 1378–1392.
Govindasamy G., Sharma R., Subramanian S. 2018. Studies on the effect of heterogeneous catalysts on the hydrothermal liquefaction of sugarcane bagasse to low-oxygen-containing bio-oil. Biofuels 10: 665–675.
Hirel B., Tétu T., Lea P.J., Dubois F. 2011. Improving nitrogen use efficiency in crops for sustainable agriculture. Sustainability 3: 1452–1485.
Ioelovich M. 2015. Recent findings and the energetic potential of plant biomass as a renewable source of biofuels – a review. Bioresources 10: 1879–1914.
Jaichakan P., Thi D., Nhung H.,Nakphaichit M. 2019. Intensification of cellulolytic hydrolysis of rice husk , rice straw, and defatted rice bran by sodium hydroxide pretreatment. Food Appl. Biosci. 7: 172–183.
Jamilatun S., Budhijanto, Rochmadi, Yuliestyan A., Hadiyanto H., Budiman A. 2019. Comparative analysis between pyrolysis products of Spirulina platensis biomass and its residues. Int. J. Renew. Energy Devel. 8: 133–140.
Jena U., Das K.C. 2011. Comparative evaluation of thermochemical liquefaction and pyrolysis for bio-oil production from microalgae. Energy Fuels 25: 5472–5482.
Jensen C.U., Guerrero J.K.R., Karatzos S., Olofsson G., Iversen S.B. 2018. HydrofactionTM of forestry residues to drop-in renewable transportation fuels. In: Rosendahl L. (Ed.) Direct Thermochemical Liquefaction for Energy Applications. Woodhead Publishing, pp. 319–345.
Jindal M.K., Jha M.K. 2016. Hydrothermal liquefaction of wood: A critical review. Rev. Chem. Eng. 32: 459–488.
Kabir G., Hameed B.H. 2017. Recent progress on catalytic pyrolysis of lignocellulosic biomass to high-grade bio-oil and bio-chemicals. Renew. Sust. Energy Rev. 70: 945–967.
Karaosmanoğlu F., Işigigür-Ergüdenler A., Sever A. 2000. Biochar from the straw-stalk of rapeseed plant. Energy Fuels 14: 336–339.
Karaosmanoğlu F., Tetik E., Gürboy B., Şanli I. 1999. Characterization of the straw stalk of the rapeseed plant as a biomass energy source. Energy Sources 21: 801–810.
Kruse, A., & Dinjus, E. 2007. Hot compressed water as reaction medium and reactant: 2. Degradation reactions. J. Supercri. Fluids 41: 361–379.
Kumar, R. 2022. A review on the modelling of hydrothermal liquefaction of biomass and waste feedstocks. Energy Nexus 5: 100042.
Lavanya M., Meenakshisundaram A., Renganathan S., Chinnasamy S., Lewis D.M., Nallasivam J., Bhaskar S. 2016. Hydrothermal liquefaction of freshwater and marine algal biomass: A novel approach to produce distillate fuel fractions through blending and co-processing of biocrude with petrocrude. Bioresour. Technol. 203: 228–235.
Lee Y. H, Fan L.T. 1982. Kinetic studies of enzymatic hydrolysis of insoluble cellulose: Analysis of the initial rates. Biotechnol. Bioeng. 24: 2383–2406.
López Barreiro D., Prins W., Ronsse F., Brilman W. 2013. Hydrothermal liquefaction (HTL) of microalgae for biofuel production: state of the art review and future prospects. Biomass Bioenergy 53: 113–127.
Lynd L.R., Larson E., Greene N., Laser M., Sheehan J., Dale B.E., McLaughlin S., Wang M. 2009. The role of biomass in America’s energy future: framing the analysis. Biofuels Bioprod. Bioref. 3: 113–123.
Mani S., Tabil L.G., Sokhansanj S. 2004. Grinding performance and physical properties of wheat and barley straws, corn stover and switchgrass. Biomass Bioenergy 27: 339–352.
Marris E. 2006. Putting the carbon back: Black is the new green. Nature 442: 624–626.
Mathanker A., Pudasainee D., Kumar A., Gupta R. 2020. Hydrothermal liquefaction of lignocellulosic biomass feedstock to produce biofuels: Parametric study and products characterization. Fuel 271: 117534.
McKendry P. 2002a. Energy production from biomass (part 1): Overview of biomass. Bioresour. Technol. 83: 37–46.
McKendry P. 2002b. Energy production from biomass (part 2): conversion technologies. Bioresour. Technol. 83: 47–54.
Mensah M.B., Jumpah H., Boadi N.O., Awudza J.A.M. 2021. Assessment of quantities and composition of corn stover in Ghana and their conversion into bioethanol. Sci. Afr. 12: e00731.
Minarick M., Zhang Y., Schideman L., Wang Z., Yu G., Funk T., Barker D. 2011. Product and economic analysis of direct liquefaction of swine manure. Bioenergy Res. 4: 324–333.
Minowa T., Fang Z., Ogi T., Várhegyi G. 1998a. Decomposition of cellulose and glucose in hot-compressed water under catalyst-free conditions. J. Chem. Eng. Japan 31: 131–134.
Minowa T., Kondo T., Sudirjo S.T. 1998b. Thermochemical liquefaction of Indonesian biomass residues. Biomass Bioenergy 14: 517–524.
Molino A., Chianese S., Musmarra D. 2016. Biomass gasification technology: The state of the art overview. J. Energy Chem. 25: 10–25.
Möller M., Harnisch F., Schröder U. 2013. Hydrothermal liquefaction of cellulose in subcritical water—the role of crystallinity on the cellulose reactivity. RSC Adv. 3: 11035–11044.
Mortensen P.M., Grunwaldt J.-D., Jensen P.A., Knudsen K.G., Jensen A.D. 2011. A review of catalytic upgrading of bio-oil to engine fuels. Appl. Catal. A General 407: 1–19.
Mosier N., Wyman C., Dale B., Elander R., Lee Y.Y., Holtzapple M., Ladisch M. 2005. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour. Technol. 96: 673–686.
Mourtzinis S., Cantrell K.B., Arriaga F.J., Balkcom K.S., Novak J.M., Frederick J.R., Karlen D.L. 2014. Distribution of structural carbohydrates in corn plants across the southeastern USA. BioEnergy Res. 7: 551–558.
Mtunzi B., Mampwheli N., Meyer E., Mungwena W. 2012. Bagasse-based co-generation at Hippo Valley Estates sugar factory in Zimbabwe. J. Energy Southern Afr. 23: 15–22.
Naik S., Goud V., Rout P., Dalai A. 2010. Production of first and second generation biofuels: A comprehensive review. Renew. Sust. Energy Rev. 14: 578–597.
Neveux N., Yuen A.K.L., Jazrawi C., Magnusson M., Haynes B.S., Masters A.F., Montoya A., Paul N.A., Maschmeyer T., Nys R. de. 2014. Biocrude yield and productivity from the hydrothermal liquefaction of marine and freshwater green macroalgae. Bioresour. Technol. 155: 334-341.
Niu W., Liu X., Huang G., Chen L., Han L. 2013. Physicochemical composition and energy property changes of wheat straw cultivars with advancing growth days at maturity. Energy Fuels 27: 5940–5947.
Obeid R., Smith N., Lewis D.M., Hall T., van Eyk P. 2022. A kinetic model for the hydrothermal liquefaction of microalgae, sewage sludge and pine wood with product characterisation of renewable crude. Chem. Eng. J. 428: 131228.
Ou L., Thilakaratne R., Brown R.C., Wright M.M. 2015. Techno-economic analysis of transportation fuels from defatted microalgae via hydrothermal liquefaction and hydroprocessing. Biomass Bioenergy 72: 45–54.
Parikh J., Channiwala S.A., Ghosal G.K. 2007. A correlation for calculating HHV from proximate analysis of solid fuels. Fuel 86: 1710–1717.
Pedersen T.H. 2015. Hydrothermal Liquefaction of Biomass and Model Compounds. Aalborg University Press, pp. 217.
Pedersen T.H., Rosendahl L.A. 2015. Production of fuel range oxygenates by supercritical hydrothermal liquefaction of lignocellulosic model systems. Biomass Bioenergy 83: 206–215.
Perlack R.D., Wright L.L., Turhollow A.F., Graham R.L., Stokes B.J., Erbach D.C. 2005. Biomass as Feedstock for a Bioenergy and Bioproducts Industry: The Technical Feasibility of a Billion-Ton Annual Supply. Springfield, VA, 72.
Pińkowska H., Wolak P., Złocińska A. 2011. Hydrothermal decomposition of xylan as a model substance for plant biomass waste – Hydrothermolysis in subcritical water. Biomass Bioenergy 35: 3902–3912.
Prasad, S., & Ingle, A. P. 2019. Impacts of sustainable biofuels production from biomass. In: Rai M., Ingle A.P. (Eds.) Sustainable Bioenergy. Elsevier, pp. 327–346.
Robbins M.P., Evans G., Valentine J., Donnison I.S., Allison G.G. 2012. New opportunities for the exploitation of energy crops by thermochemical conversion in Northern Europe and the UK. Progr. Energy Combust. Sci. 38: 138–155.
Rocha G.J.M., Nascimento V.M., Gonçalves A.R., Silva V.F.N., Martín C. 2015. Influence of mixed sugarcane bagasse samples evaluated by elemental and physical-chemical composition. Industr. Crops Prod. 64: 52–58.
Ross A.B., Jones J.M., Kubacki M.L., Bridgeman T. 2008. Classification of macroalgae as fuel and its thermochemical behaviour. Bioresour. Technol. 99: 6494–6504.
Sanderson K. 2011. Chemistry: It’s not easy being green. Nature 469: 18–20.
Sarkanen K.V, Ludwig C.H. 1971. Lignins: Occurrence, Formation, Structure and Reactions. Wiley Interscience, 916 p.
Sunphorka S., Chavasiri W., Oshima Y., Ngamprasertsith S. 2012. Protein and sugar extraction from rice bran and de-oiled rice bran using subcritical water in a semi-continuous reactor: Optimization by response surface methodology. Int. J. Food Eng. 8: 1–22.
Savage P.E., Levine R., Huelsman C. 2010. Hydrothermal Processing of Biomass. In: Crocker M. (Ed.) Thermochemical Conversion of Biomass to Liquid Fuels and Chemicals. RSC Energy and Environment Series. RSC Publishing, Cambridge, 192–221.
Seghiri R., Kharbach M., Essamri A. 2019. Functional composition, nutritional properties, and biological activities of Moroccan Spirulina microalga. J. Food Qual. 1: 3707219.
Shekharam K.M., Venkataraman L.V., Salimath P.V. 1987. Carbohydrate composition and characterization of two unusual sugars from the blue green alga Spirulina platensis. Phytochemistry 26: 2267–2269.
Shen Y., Fu X., Zhang L., Wang X., Xie J. 2010. Pyrolysis of biomass and catalytic reforming of the pyrolysis products. Biotechnol. Adv. 28: 635–644.
Singh N.B., Kumar A., Rai S. 2014. Potential production of bioenergy from biomass in an Indian perspective. Renew. Sust. Energy Rev. 39: 65–78.
Sintamarean I.M., Grigoras I.F., Jensen C.U., Toor S.S., Pedersen T.H., Rosendahl L.A. 2017. Two-stage alkaline hydrothermal liquefaction of wood to biocrude in a continuous bench-scale system. Biomass Conv. Bioref. 7: 425–435.
Svärd A., Brännvall E., Edlund U. 2015. Rapeseed straw as a renewable source of hemicelluloses: Extraction, characterization and film formation. Carbohydr. Polym. 133: 179–186.
Szyszlak-Bargłowicz J., Słowik T., Zajac G., Blicharz-Kania A., Zdybel B., Andrejko D., Obidziński S. 2021. Energy parameters of Miscanthus biomass pellets supplemented with copra meal in terms of energy consumption during the pressure agglomeration process. Energies 14: 4167.
Tekin K. 2015. Hydrothermal conversion of Russian olive seeds into crude bio-oil using a CaO catalyst derived from waste mussel shells. Energy Fuels 29: 4382–4392.
Tekin K., Karagöz S., Bektaş S. 2014. A review of hydrothermal biomass processing. Renew. Sust. Energy Rev. 40: 673–687.
Templeton D.W., Sluiter A.D., Hayward T.K., Hames B.R., Thomas S.R. 2009. Assessing corn stover composition and sources of variability via NIRS. Cellulose 16: 621–639.
Templeton D.W., Wolfrum E.J., Yen J.H., Sharpless K.E. 2016. Compositional analysis of biomass reference materials: results from an interlaboratory study. Bioenergy Res. 9: 303–314.
Tian C., Liu Z., Zhang Y., Li B., Cao W., Lu H., Duan N., Zhang L., Zhang T. 2015. Hydrothermal liquefaction of harvested high-ash low-lipid algal biomass from Dianchi Lake: Effects of operational parameters and relations of products. Bioresour. Technol. 184: 336–343.
Tirumareddy P., Patra B.R., Borugadda V.B., Dalai A.K. 2024. Co-hydrothermal liquefaction of waste biomass: Comparison of various feedstocks and process optimization. Bioresour. Technol. Rep. 27: 101898.
Toor S.S., Rosendahl L., Rudolf A. 2011. Hydrothermal liquefaction of biomass: A review of subcritical water technologies. Energy 36: 2328–2342.
Valdez P.J., Tocco V.J., Savage P.E. 2014. A general kinetic model for the hydrothermal liquefaction of microalgae. Bioresour. Technol. 163: 123–127.
Vardon D.R., Sharma B.K., Scott J., Yu G., Wang Z., Schideman L., Zhang Y., Strathmann T.J. 2011. Chemical properties of biocrude oil from the hydrothermal liquefaction of Spirulina algae, swine manure, and digested anaerobic sludge. Bioresour. Technol. 102: 8295–8303.
Vassilev S.V., Baxter D., Andersen L.K., Vassileva C.G. 2010. An overview of the chemical composition of biomass. Fuel 89: 913–933.
Viana H.F.S., Rodrigues A.M., Godina R., Matias J.C.O. Nunes L.J.R. 2018. Evaluation of the physical, chemical and thermal properties of Portuguese maritime pine biomass. Sustainability 10: 2877.
Wancura J.H.C., Albarello M., Hollas S.R., Schulz A., Draszewski C.P., Abaide E.R., Tres M.V, Zabot G.L., de Castilhos F., Mayer F.D. 2024. Combined production of biofuel precursors, platform chemicals, and catalyst material from the integral processing of rice bran. Energy Convers. Manage. 317:118860.
Wegener G., Przyklenk M., Fengel D. 1983. Hexafluoropropanol as valuable solvent for lignin in UV and IR spectroscopy. Holzforschung 37: 303–307.
Weijde T. van der, Kiesel A., Iqbal Y., Muylle H., Dolstra O., Visser R.G.F., Lewandowski I., Trindade L.M. 2017. Evaluation of Miscanthus sinensis biomass quality as feedstock for conversion into different bioenergy products. GCB Bioenergy 9: 176–190.
Wilson L., Yang W., Blasiak W., John G.R., Mhilu C.F. 2011. Thermal characterization of tropical biomass feedstocks. Energy Convers. Manage. 52: 191–198.
Wu Z., Hao H., Zahoor, Tu Y., Hu Z., Wei F., Liu Y., Zhou Y., Wang Y., Xie G., Gao C., Cai X., Peng L., Wang L. 2014. Diverse cell wall composition and varied biomass digestibility in wheat straw for bioenergy feedstock. Biomass Bioenergy 70: 347–355.
Yadav V., Sharma J., Verma S. 2023. Study of physio-chemical properties, proximate and ultimate analysis of biodiesel extracted from three feed-stocks – melia azedarach, rice bran and water hyacinth. Rasayan J. Chem. 16: 1575–1583.
Yong T.L.-K., Matsumura Y. 2012. Reaction kinetics of the lignin conversion in supercritical water. Industr. Eng. Chem. Res. 51: 11975–11988.
Yue D., You F., Snyder S.W. 2014. Biomass-to-bioenergy and biofuel supply chain optimization: Overview, key issues and challenges. Comput. Chem. Eng. 66: 36–56.
Zhang X., Yang W., Blasiak W. 2011. Modeling study of woody biomass: interactions of cellulose, hemicellulose, and lignin. Energy Fuels 25: 4786–4795.
Zhong C., Wei X. 2004. A comparative experimental study on the liquefaction of wood. Energy 29: 1731–1741.
Zhu Y., Biddy M.J., Jones S.B., Elliott D.C., Schmidt A.J. 2014. Techno-economic analysis of liquid fuel production from woody biomass via hydrothermal liquefaction (HTL) and upgrading. Appl. Energy 129: 384–394.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 University of LatviaThis is an open access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles in this journal without asking prior permission from the publisher or the author. This is in accordance with the BOAI definition of open access. Author(s) of the published papers retain copyright, the papers are made freely available for non-commercial purposes, allowing download, reuse, reprint and distribution of the material as long as the original authors and the source are cited. This license is equivalent to the CC BY-NC-ND.