Optimization of callus induction protocol from leaf explants of Portulaca oleracea and assessment of fatty acid profiles

Authors

  • Archana Srivastava Department of Botany, Bhavans Sheth RA College of Science, Gujarat University, Ahmedabad, Gujarat, India
  • Aruna Joshi Department of Botany, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India

DOI:

https://doi.org/10.22364/eeb.22.15

Keywords:

auxin, callus, cytokinin, ethyl methane sulphonate, omega fatty acids, purslane, plant tissue culture

Abstract

A protocol for optimization of callus culture establishment from leaf explants of Portulaca oleracea L. was developed. The effect of ethyl methanesulphonate (EMS) on callus induction and synthesis of fatty acids was evaluated. Callus culture was initiated from leaf explants on Murashige and Skoog’s medium supplemented with 2,4‑dichlorophenoxy acetic acid (2,4‑D), a combination of 2,4‑D + 6‑benzyl adenine (BA) or 2,4‑D + kinetin. The maximum callus biomass was obtained at 2.5 µM BA + 2.5 µM 2,4‑D (20.22 g leaf explant–1 fresh weight). The leaves treated with EMS (0.1 to 0.4% h–1) differentiated callus on this optimized medium combination. The gas chromatography-mass spectrometry analysis of fatty acids indicated that the leaves had a high linolenic acid content (17.72%). The callus cultures synthesized heptadecanoic, oleic, and tricosanoic acids, which were otherwise absent in the leaves. Eicosanoic and docosanoic acids in callus cultures were 2.78 and 3.18 times higher than their content in the leaves, respectively. The diversity of fatty acids in treated callus cultures decreased with increased EMS concentration, but the content of a few individual fatty acids was enhanced. Callus at the dose of 0.1% EMS synthesized linoleic acid, which was two times higher than in the untreated callus, while at 0.2% EMS stearic acid was synthesized, which was absent in the untreated callus. It was concluded that the callus of P. oleracea accumulated different fatty acids, and EMS treatment enhanced the content of a few fatty acids in the cultures.

References

Ahmad S., Spoor. 1999. Effect of NAA and BAP on callus culture and plant regeneration in curly kale (Brassica oleracea L.). Pakistan J. Biol. Sci. 2: 109–112. DOI: https://doi.org/10.3923/pjbs.1999.109.112

Al-Bakr A.R. 2018. Propagation of Portulaca oleracea L. and level of active compounds in callus culture. Int. J. Enh. Res. Sci. Technol. Eng. 7: 33-43.

Anonymous. 2003. Raw Materials. In: The Wealth of India. A dictionary of raw materials and industrial products. VIII CSIR, PID, New Delhi, pp. 219–220.

Bennani F., Rossi-Hassani B.D. 1997. Effect of EMS and sodium azide on callus culture and plant regeneration in Portulaca grandiflora (Hook). International Atomic Energy Agency. Mutation Breeding Newsletter No. 43.

Chang S., Wang L., Zhang T., Nie Y., Liu R., Ma L. 2020. Amino acid sequence characterisation and anti-inflammatory potency evaluation of Portulaca oleracea L. oligopeptides in macrophages. RSC Adv. 10: 7321–7327. DOI: https://doi.org/10.1039/C9RA10465H

Chen S., Xiong Y., Yu X., Pang J., Zhang T., Wu K., Ren H., Jian S., Teixeira da Silva J.A., Xiong Y., Zeng S., Ma G. 2020. Adventitious shoot organogenesis from leaf explants of Portulaca pilosa L. Sci. Rep. 10: 3675. DOI: https://doi.org/10.1038/s41598-020-60651-w

Dalvi S.G., Tawar P.N., Suprasanna P., Dixit G.B., Prasad T. 2021. EMS-based in vitro mutagenesis and mutant screening for smut resistance with agronomic traits in sugarcane. Sugar Tech. 23: 854–864. DOI: https://doi.org/10.1007/s12355-020-00931-x

Desta M., Molla A., Yusuf Z. 2020. Characterization of physico-chemical properties and antioxidant activity of oil from seed, leaf and stem of purslane (Portulaca oleracea L.). Biotechnol. Rep. 27: e00512. DOI: https://doi.org/10.1016/j.btre.2020.e00512

Farag M.A., Zeinab T., Shakour A. 2019. Metabolomics driven analysis of 11 Portulaca leaf taxa as analysed via UPLC-ESI-MS/MS and chemometrics. Phytochemistry 161: 117–129. DOI: https://doi.org/10.1016/j.phytochem.2019.02.009

Glick N.R., Fischer M.H. 2013. The role of essential fatty acids in human health. J. Evid, Based Complem. Altern. Medic. 18: 268–289. DOI: https://doi.org/10.1177/2156587213488788

Hadebe S., Modi A.T., Hugo A., Shimelis H.A. 2019. Seed oil content and fatty acid composition response to ethyl methane sulphonate mutagenesis in vernonia. South African J. Plant Soil 36: 375–380. DOI: https://doi.org/10.1080/02571862.2019.1631399

Hafez M.R., Mohammed A.A.Y., Abd El-Naby A.E.-R.M., Tolba A.E.A., Khalifa E.Y.M., Hamed H.M., Abdullah M.M.K., Ahmed M.M.F., Hekal M.S., Ali D.H.A. 2019. Changes in the profiling of fatty acids of Glycine max L. (soybean) callus after mutagen treatments. Egyptian J. Bot. 59: 679–694. DOI: https://doi.org/10.21608/ejbo.2019.6176.1250

Irene W.M., Alumiro H.L., Asava K.K., Agwanda C.O., Anami S.E. 2019. Effects of genotype and plant growth regulators on callus induction in leaf cultures of Coffea arabica L. F1 hybrid. J. Plant Biochem. Physiol. 7: 236.

Islam M.A., Bin Mohi Uddin M. M., Rasul M.G., Haque Swapon M.A., Ahmed M., Hasan M. 2022. In vitro screening and field performance of EMS-treated eggplants for the selection of shoot and fruit borer-resistant plants. Agronomy 12:1832. DOI: https://doi.org/10.3390/agronomy12081832

Kashtwari M., Wani A.A., Dhar M.K., Jan S., Kamili A.N. 2018. Development of an efficient in vitro mutagenesis protocol for genetic improvement of saffron (Crocus sativus L.). Physiol. Mol. Biol. Plants 24: 951–962. DOI: https://doi.org/10.1007/s12298-018-0576-6

Kaur N., Chugh V., Gupta A.K. 2014. Essential fatty acids as functional components of foods – a review. J. Food Sci. Technol. 51: 2289–2303. DOI: https://doi.org/10.1007/s13197-012-0677-0

Lee J.H., Park J.E., Han J.S. 2020. Portulaca oleracea L. extract reduces hyper glycemia via PI3k/Akt and AMPK pathways in the skeletal muscles of C57BL/Ksjtodb/db mice. J. Ethnopharmacol. 260: 112973. DOI: https://doi.org/10.1016/j.jep.2020.112973

Liu J., Jiu J., Zhang X., Sun J., Ying X. 2024. Four alkaloids from Portulaca oleracea L. and their anti-inflammatory. Nat. Prod. Res. https://doi.org/10.1080/14786419.2024.2352145. DOI: https://doi.org/10.1080/14786419.2024.2352145

Mei C., Michaud M., Cussac M., Albrieux C., Gros V., Marechal E. et al. 2015. Levels of polyunsaturated fatty acids correlate with growth rate in plant cell cultures. Sci. Rep. 5: 15207. DOI: https://doi.org/10.1038/srep15207

Melnyk C.W. 2023. Quantitative regeneration: Skoog and Miller revisited. Quantit. Plant Biol. 4: e10. DOI: https://doi.org/10.1017/qpb.2023.9

Monemi M.B., Kazemitabar S.K., Khaniki G.B., Yasari E., Sohrevardi F., Pourbagher R. 2014. Tissue culture study of the medicinal plant leek (Allium ampeloprasum L.). Int. J. Mol. Cell. Med. 3: 118–125.

Mousavi S.R.J., Niazmand R. 2017. Fatty acid composition and oxidation kinetic parameters of purslane (Portulaca oleracea) seed oil. Agric. Res. 6: 421–426. DOI: https://doi.org/10.1007/s40003-017-0271-9

Murashige T., Skoog F. 1962. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant. 15: 473–479. DOI: https://doi.org/10.1111/j.1399-3054.1962.tb08052.x

Nasri F., Zakizadeh H., Vafaee Y., Mozafari A.A. 2022. In vitro mutagenesis of Chrysanthemum morifolium cultivars using ethyl methane sulphonate (EMS) and mutation assessment by ISSR and IRAP markers. Plant Cell Tissue Organ Cult. 149: 657–673. DOI: https://doi.org/10.1007/s11240-021-02163-7

Parasannanavar D., Gaddam I., Bukya T., Ibrahim S.A., Reddy K.S., Banjara S.K., Salvadi B.P.P., Kumar N.B., Rao S.F., Geddam J.J.B., Rajkumar H. 2021. Omega-3 polyunsaturated fatty acid intake and plasma fatty acids of school going Indian children to a cross-sectional study. Prostagland. Leukotrienes Essent. Fatty Acids 170: 102294. DOI: https://doi.org/10.1016/j.plefa.2021.102294

Penna S., Vitthal S., Yadav P.V. 2012. In vitro mutagenesis and selection in plant tissue cultures and their prospects for crop improvement. Bioremed. Biodiv. Bioavail. 6: 6–14.

Petropoulos S.A., Fernandes A., Dias M.I., Vasilakoglou I.B., Petrotos K., Barros L., Ferreira I.C.F.R. 2019. Nutritional value chemical composition and cytotoxic properties of common purslane (Portulaca oleracea L.) in relation to harvesting stage and plant part. Antioxidants 8: 293. DOI: https://doi.org/10.3390/antiox8080293

Rani N., Joy B., Abraham E.T. 2007. Cell suspension cultures of Portulaca grandiflora as potent catalysts for biotransformation of L-tyrosine into L-DOPA, an anti-Parkinson’s drug. Pharmaceut. Biol. 45: 48–53. DOI: https://doi.org/10.1080/13880200601026341

Rincón-Pérez J., Rodryíguez-Hernández L., RuízValdiviezo V.M., Abud-Archila M., Luján-Hidalgo M.C., Ruiz-Lau N., González-Mendoza D., Gutiérrez-Miceli F.A. 2016. Fatty acids profile, phenolic compounds and antioxidant capacity in elicited callus of Thevetia peruviana (Pers.) K. Schum. J. Oleo Sci. 65: 311–318. DOI: https://doi.org/10.5650/jos.ess15254

Rodríguez-Hernández L., Nájera-Gomez H., Luján-Hidalgo M., Ruiz-Lau N., Lecon-Guzmán C., Abud-Archila M., Ruíz-Valdiviezo V., Gutiérrez-Miceli F. 2018. Fatty acid profile, phenolics and flavonoids contents in Olea europaea L. callus culture cv cornicabra. J. Oleo Sci. 67: 525–529. DOI: https://doi.org/10.5650/jos.ess17189

Rossi-Hassani B.D., Zryd J.P. 1995. In vitro culture and plant regeneration of large flowered purslane. Plant Cell Tissue Organ Cult. 41: 281–283. DOI: https://doi.org/10.1007/BF00045093

Safdari Y., Kazemitabar S.K., 2009. Plant tissue culture study on two different races of purslane (Portulaca oleracea L.). African J. Biotechnol. 8: 5906–5912. DOI: https://doi.org/10.5897/AJB09.816

Safdari Y., Kazemitabar S.K., 2010. Direct shoot regeneration, callus induction and plant regeneration from callus tissue in Mose Rose (Portulaca grandiflora L.). Plant Omics J. 3: 45–51.

Sedaghati B., Haddad R., Bandehpour M. 2018. Efficient plant regeneration and Agrobacterium-mediated transformation via somatic embryogenesis in purslane (Portulaca oleracea L.) an important medicinal plant. Plant Cell Tissue Organ Cult. 136: 231–245. DOI: https://doi.org/10.1007/s11240-018-1509-3

Shekhawat M.S., Kannan N., Manokari M. 2015. Propagation of Portulaca oleracea Linn. in liquid medium: Implication of plant growth regulators in culture. J. Microbiol. Biotechnol. Food Sci. 4: 332–335. DOI: https://doi.org/10.15414/jmbfs.2015.4.4.332-335

Skoog F., Miller C.O. 1957. Chemical regulation of growth and organ formation in plant tissues cultured in vitro. Symp. Soc. Exp. Biol. 11: 118–130.

Smith R.M. 2000. Plant Tissue Culture: Techniques and Experiments. Academic Press, San Diego, 231 p.

Srivastava A., Joshi A., 2021. Fatty acid analysis of in vitro shoot cultures of Portulaca oleracea Linn. Plant Physiol. Rep. 26: 321–328. DOI: https://doi.org/10.1007/s40502-021-00582-4

Subasi I., Basalma D., Arslan Y., Eryigit T. 2023. Influence of EMS applications on fatty acids composition in safflower. Kuwait J. Sci. 50: 26–30. DOI: https://doi.org/10.1016/j.kjs.2023.02.005

Uddin M.K., Juraimi A.S., Hossain M.S., Un Nahar M.A., Ali M.E., Rahman M.M. 2014. Purslane weed (Portulaca oleracea): A prospective plant source of nutrition, omega-3 fatty acid, and antioxidant attributes. Sci.World J. 2014: 951019. DOI: https://doi.org/10.1155/2014/951019

van Rooijen M.A., Plat J., Blom W.A.M., Zock P.L., Mensink R.P. 2021. Dietary stearic acid and palmitic acid do not differently affect ABCA1-mediated cholesterol efflux capacity in healthy men and postmenopausal women: A randomized controlled trial. Clin. Nutr. 40: 804–811. DOI: https://doi.org/10.1016/j.clnu.2020.08.016

Watson J.D., Baker T.A., Bell S.P., Gann A., Levine M., Losick R. 2006. The mutability and repair of DNA. In: Molecular Biology of the Gene. 5th Ed. Pearson Education and Dorling Kindersley, pp.244–245

Weston T.R., Derner J.D., Murrieta C.M., Rule D.C., Hess B.W. 2008. Comparison of catalysts for direct trans esterification of fatty acids in freeze-dried forage sample. Crop Sci. 48: 1636–1641. DOI: https://doi.org/10.2135/cropsci2007.07.0376sc

Widoretno W., Indriyani S. 2020. The effect of ethyl methane sulphonate (EMS) on the in vitro shoot regeneration of vetiver (Vetiveria zizanioides [L.] Nash.). J. Exp. Life Sci. 10: 150–153. DOI: https://doi.org/10.21776/ub.jels.2020.010.03.01

Xiong Y., Chen S., Wei Z., Yu X., Pang J., Zhang T., Wu K., Ren H., Jian S., Teixeira da Silva J.A., Ma G. 2021. In vitro flowering and fruiting in Portulaca pilosa L. South African J. Bot. 140: 1–3. DOI: https://doi.org/10.1016/j.sajb.2021.03.027

Zhou Y., Xin H., Rahman K., Wang S., Peng C., Zhang H. 2015. Portulaca oleracea L.: A review of phytochemistry and pharmacology effects. BioMed Res. Int. 2015: 925631. DOI: https://doi.org/10.1155/2015/925631

Downloads

Published

2024-10-07

How to Cite

Srivastava, A., & Joshi, A. (2024). Optimization of callus induction protocol from leaf explants of Portulaca oleracea and assessment of fatty acid profiles. Environmental and Experimental Biology, 22(3), 157-166. https://doi.org/10.22364/eeb.22.15