Physiological responses of the Asian green mussel (Perna viridis) in highly turbid waters

Authors

  • Francis Albert T. Argente Fisheries Science Department, Pangasinan State University – Binmaley Campus, Binmaley, Pangasinan, Philippines

DOI:

https://doi.org/10.22364/eeb.22.12

Keywords:

aquaculture, bivalves, filter-feeders, water quality

Abstract

In order to simulate conditions induced by climate change, the filtration rates and pseudofaeces production of Perna viridis from two distinct size categories were investigated at progressively increasing total suspended solid concentrations. Filtration rates of smaller mussels increased with increasing total suspended solid concentration. For larger mussels, filtration rates increased with increased concentration up to 800 mg L–1, after which filtration rate dropped sharply. Pseudofaeces production also increased with increasing total suspended solid concentration up to 600 mg L–1, beyond which no further significant increase was observed for large mussels, and there was a considerable decline for small mussels. The results show that the mussels of different sizes have different filtration rates with smaller mussels ranging from 0.11 to 2.62 mg min–1 and in larger mussels from 0.21 to 4.83 mg min–1. Pseudofaeces production ranged from 0.08 to 0.67 mg min–1 for small mussels and from 0.02 to 1.42 mg min–1 for larger mussels. These results may imply that smaller mussels are more vulnerable to siltation and high sediment load compared to larger individuals. In the natural environment, this situation can be caused by more frequent and severe typhoons resulting from climate change.

References

Andrade V.S., Gutierrez M.F., Regaldo L., Paira A.R., Repetti M.R., Gagneten A.M. 2021. Influence of rainfall and seasonal crop practices on nutrient and pesticide runoff from soybean dominated agricultural areas in Pampean streams, Argentina. Sci. Total Environ. 788: 147676. DOI: https://doi.org/10.1016/j.scitotenv.2021.147676

Argente F.A.T., Cesar S.A., Dy D.T. 2014. High turbidity affects filtration rate and pseudofaeces production of the mud clam Polymesoda erosa (Solander 1786) (Bivalvia: Corbiculidae). Biotropia 21: 71–81. DOI: https://doi.org/10.11598/btb.2014.21.2.1

Argente F.A.T., Fontanilla S.M.R., Corbillon M.A.C., Malanum M.A.S., Fillone F.A. 2018. Physiological responses of the pectinate Venus clam, Gafrarium pectinatum (Bivalvia: Veneridae) to increasing turbidity concentrations. Int. J. Fisher. Aquat. Stud. 6: 83–86.

Argente F.A.T., Geraldino P.J.L., Otadoy J.B. 2024. Filtration rates and pseudofaeces production of the mud clam, Geloina expansa (Mousson 1849) (Bivalvia: Cyrenoididae) at increasing salinity concentrations. Egyptian J. Aquat. Biol. Fisher. 28: 1469–1478. DOI: https://doi.org/10.21608/ejabf.2024.374304

Asaduzzaman M., Noor A.R., Rahman M.M., Akter S., Hoque N.F., Shakil A., Wahab M.A. 2019. Reproductive biology and ecology of the green mussel Perna viridis: a multidisciplinary approach. Biology 8: 88. DOI: https://doi.org/10.3390/biology8040088

Bacon G.S., MacDonald B.A., Ward J.E. 1998. Physiological responses of infaunal (Mya arenaria) and epifaunal (Placopecten magellanicus) bivalves to variations in the concentration and quality of suspended particles I. Feeding activity and selection. J. Exp. Mar. Biol. Ecol. 219: 105–125. DOI: https://doi.org/10.1016/S0022-0981(97)00177-9

Barillé L., Prou J., Héral M., Razet D. 1997. Effects of high natural seston concentrations on the feeding, selection, and absorption of the oyster Crassostrea gigas (Thunberg). J. Exp. Mar. Biol. Ecol. 212: 149–172. DOI: https://doi.org/10.1016/S0022-0981(96)02756-6

Chen J., Tam C.Y., Cheung K., Wang Z., Murakami H., Lau N.G., Garner S.T., Xiao Z., Choy C.W., Wang P. 2021. Changing impacts of tropical cyclones on East and Southeast Asian Inland Regions in the past and a globally warmed future climate. Front. Earth Sci. 9:769005. DOI: https://doi.org/10.3389/feart.2021.769005

Desquitado A.M.S., Perez M.R.R., Puchero R.S.R., Macalalad E.P. 2020. A climatological study of typhoons over the Philippine area of responsibility from 1989–2018. E3S Web Conf. 200: 02001. DOI: https://doi.org/10.1051/e3sconf/202020002001

Kanada S., Aiki H., Tsuboki K., Takayabu I. 2021. Future changes of a slow-moving intense typhoon with global warming: A case study using a regional 1-km-mesh atmosphere-ocean coupled model. Sci. Online Lett. Atmosph. 17A: 14–20. DOI: https://doi.org/10.2151/sola.17A-003

Layugan E.A., Tabasin J.P.B., Alejos M.S., Pidoy L.E. 2018. Growth performance of green mussel Perna viridis transplanted in Buguey Lagoon, Philippines. Acta Sci. Agric. 2: 43–47.

Lee C.S., Lee Y.C., Chiang H.M. 2016. Abrupt state of change of river water quality (turbidity): Effect of extreme rainfalls and typhoons. Sci. Total Environ. 557–558: 91–101. DOI: https://doi.org/10.1016/j.scitotenv.2016.02.213

Lee T.C., Knutson T.R., Nakaegawa T., Ying M., Cha E.J. 2020. Third assessment on impacts of climate change on tropical cyclones in the Typhoon Committee Region – part I: Observed changes, detection and attribution. Trop. Cyclone Res. Rev. 9: 1–22. DOI: https://doi.org/10.1016/j.tcrr.2020.03.001

Luesiri M., Boonsanit P., Lirdwitayaprasit T., Pairohakul S. 2022. Filtration rates of the green-lipped mussel Perna viridis (Linnaeus, 1758) exposed to high concentration of suspended particles. Sci. Asia 48: 452–458. DOI: https://doi.org/10.2306/scienceasia1513-1874.2022.067

Noor N.M., Nursyam H., Widodo M.S., Risjani Y. 2019. Biological aspects of green mussels Perna viridis cultivated on raft culture in Pasaran coastal waters, Indonesia. AACL Bioflux 12: 448–456.

McDonald J.I. 2012. Detection of the tropical mussel species Perna viridis in temperate western Australia: possible association between spawning and a marine heat pulse. Aquat. Invasions 7: 483–490. DOI: https://doi.org/10.3391/ai.2012.7.4.005

Melendres A.R. Jr., Largo D.B. 2021. Integrated culture of Eucheuma denticulatum, Perna viridis, and Crassostrea sp. in Carcar Bay, Cebu, Philippines. Aquacult. Rep. 20: 100683. DOI: https://doi.org/10.1016/j.aqrep.2021.100683

Montagnac V., Guyondet T., Comeau L., Tremblay, R. 2020. Physiological differences between wild and cultured bivalves in Prince Edward Island, Canada. Aquat. Living Resour. 33: 8. DOI: https://doi.org/10.1051/alr/2020008

Morillo-Manalo L., del Norte-Campos A. 2010. Filtration and respiration rates of the short-necked clam Paphia undulata (Born, 1778) (Molusca, Pelecypoda: Veneridae) under laboratory conditions. Sci. Diliman 22: 21–29.

Penry D.L. 2000. Digestive kinematics of suspension-feeding bivalves: modeling and measuring particle-processing in the gut of Potamocorbula amurensis. Mar. Ecol. Progr. Ser. 197: 181–192. DOI: https://doi.org/10.3354/meps197181

Priya A.K., Muruganandam M., Rajamanickam S., Sivarethinamohan S., Gaddam M.K.R., Velusamy P., Gomathi R., Ravindiran G., Gurugubelli T.R., Muniasamy S.K. 2023. Impact of climate change and anthropogenic activities on aquatic ecosystem – a review. Environ. Res. 238: 117233. DOI: https://doi.org/10.1016/j.envres.2023.117233

Rajesh K.V., Mohamed K.S., Kripa K. 2001. Influence of algal cell concentration, salinity and body size on the filtration and ingestion rates of cultivable Indian bivalves. Indian J. Mar. Sci. 30: 87–92.

Riisgard H.U. 2001. On measurement of filtration rates in bivalves – the stony road to reliable data: review and interpretation. Mar. Ecol. Progr. Ser. 211: 275–291. DOI: https://doi.org/10.3354/meps211275

Santos G.D.C. 2021. 2020 tropical cyclones in the Philippines: A review. Trop. Cyclone Res. Rev. 10: 191–199. DOI: https://doi.org/10.1016/j.tcrr.2021.09.003

Sequeiros O.E., Pittaluga M.B., Frascati A., Pirmez C., Masson D.G., Weaver P., Crosby A.R., Lazzaro G., Botter G., and Rimmer J.G. 2019. How typhoon trigger turbidity currents in submarine canyons. Sci. Rep. 9: 9220. DOI: https://doi.org/10.1038/s41598-019-45615-z

Soon T.K., Ransangan J. 2014. A review of feeding behavior, growth, reproduction and aquaculture site selection for green-lipped mussel, Perna viridis. Adv. Biosci. Biotechnol. 5: 462–469. DOI: https://doi.org/10.4236/abb.2014.55056

Tan K.S., Ransangan J. 2016. Feeding behaviour of green mussels, Perna viridis farmed in Marudu Bay, Malaysia. Aquacult. Res. 12963. DOI: https://doi.org/10.1111/are.12963

Toralde C.B., Silaras M.L.S., Garcia M.M.M., Yap-Dejeto L.G. 2021. Biology and ecology of wild and cultured green mussel, Perna viridis in Eastern Visayas, Philippines. Philipp. J. Nat. Sci. 26: 20–31.

Tran T.L., Ritchie E.A., Perkins-Kirkpatrick S.E. 2022. A 50-year tropical cyclone exposure climatology in Southeast Asia. J. Geophys. Res. Atmosph. 127: e2021JD036301. DOI: https://doi.org/10.1029/2021JD036301

Velasco L.A., Navarro, J.M. 2005. Feeding physiology of two bivalves under laboratory and field conditions in response to variable food concentrations. Mar. Ecol. Progr. Ser. 291: 115–124. DOI: https://doi.org/10.3354/meps291115

Villaluz C.G.B., Tolete J.C., Almocera F.B., Janti M.J., Pilar T.J.E., Torres M.A.J., Requieron E.A. 2016. Morphological variations of green mussel (Perna viridis) in Bula, General Santos City using geometric morphometric analysis. J. Biodivers. Environ. Sci. 8: 216–224.

Wong W.H., Cheung S.G. 1999. Feeding behaviour of the green mussel, Perna viridis (L.): responses to variation in seston quantity and quality. J. Exp. Mar. Biol. Ecol. 236: 191–207. DOI: https://doi.org/10.1016/S0022-0981(98)00207-X

Wong W.H., Cheung S.G. 2001. Feeding rates and scope of growth of green mussels, Perna viridis (L.) and their relationship with food availability in Kat O, Hong Kong. Aquaculture193: 123–137. DOI: https://doi.org/10.1016/S0044-8486(00)00478-6

Zhou Z., Huang T., Ma W., Li Y., Zeng K. 2015. Impacts of water quality variation and rainfall runoff on Jinpen Reservoir, in Northwest China. Water Sci. Eng. 8: 301–308. DOI: https://doi.org/10.1016/j.wse.2015.12.003

Downloads

Published

2024-10-07

How to Cite

Argente, F. A. T. (2024). Physiological responses of the Asian green mussel (Perna viridis) in highly turbid waters. Environmental and Experimental Biology, 22(3), 129-133. https://doi.org/10.22364/eeb.22.12