Screening for contamination with genetically modified organisms in food, feed and their additives obtained in retail and online shops in Latvia

Authors

  • Lelde Grantiņa-Ieviņa Institute of Food Safety, Animal Health and Environment “BIOR”, Lejupes 3, Riga LV–1076, Latvia; Faculty of Medicine and Life Sciences, University of Latvia, Jelgavas 1, Riga LV–1004, Latvia
  • Guntis Boikmanis Institute of Food Safety, Animal Health and Environment “BIOR”, Lejupes 3, Riga LV–1076, Latvia
  • Karīna Ortlova Institute of Food Safety, Animal Health and Environment “BIOR”, Lejupes 3, Riga LV–1076, Latvia
  • Artjoms Mališevs Institute of Food Safety, Animal Health and Environment “BIOR”, Lejupes 3, Riga LV–1076, Latvia
  • Juris Ķibilds Institute of Food Safety, Animal Health and Environment “BIOR”, Lejupes 3, Riga LV–1076, Latvia
  • Lilija Kovaļčuka Institute of Food Safety, Animal Health and Environment “BIOR”, Lejupes 3, Riga LV–1076, Latvia
  • Elizabete Miltiņa Institute of Food Safety, Animal Health and Environment “BIOR”, Lejupes 3, Riga LV–1076, Latvia
  • Aija Jēriņa Institute of Food Safety, Animal Health and Environment “BIOR”, Lejupes 3, Riga LV–1076, Latvia
  • Jeļena Avsejenko Institute of Food Safety, Animal Health and Environment “BIOR”, Lejupes 3, Riga LV–1076, Latvia
  • Linda Laura Skrebeļa Institute of Food Safety, Animal Health and Environment “BIOR”, 1076, Latvia; Faculty of Medicine and Life Sciences, University of Latvia, Jelgavas 1, Riga LV–1004, LatLejupes 3, Riga LV–via
  • Elīza Zariņa Institute of Food Safety, Animal Health and Environment “BIOR”, Lejupes 3, Riga LV–1076, Latvia
  • Līna Kropačeva Institute of Food Safety, Animal Health and Environment “BIOR”, Lejupes 3, Riga LV–1076, Latvia
  • Evija Bebre Institute of Food Safety, Animal Health and Environment “BIOR”, Lejupes 3, Riga LV–1076, Latvia
  • Nils Rostoks Faculty of Medicine and Life Sciences, University of Latvia, Jelgavas 1, Riga LV–1004, Latvia

DOI:

https://doi.org/10.22364/eeb.22.11

Keywords:

antimicrobial resistance genes, enzymes, fermentation products, genetically modified microorganism, genetically modified organism, live bacteria, vitamins

Abstract

The aim of the study was to screen for contamination of food and feed products with genetically modified organisms (GMO) in several sample groups obtained from retail and online shops. The total number of samples was 171, including 67 of food, 26 feed, 27 additive, and 51 samples of dried pollen for human consumption. Detection and quantification of GMO in food and feed was performed according to the approved quantitative real-time PCR methods. Fermentation product samples were analyzed using screening for antimicrobial resistance genes, 16S RNA and ITS1 sequencing, isolation of bacterial cultures and whole genome sequencing. In total, GMO contamination was found in 12 samples (in 10.45% of food and in 19.23% of feed samples). A lower proportion of GMO containing samples were from the European Union (10.26 %) vs. samples from outside (17.02%), but none with ingredients of both origins. Non-compliant were three food and five feed samples. Of the 27 samples of food and feed additives and food supplements, 10 samples were possibly non-compliant, as they contained live bacteria with antimicrobial resistance genes, and seven of them contained possibly recombinant DNA. The study indicates presence of GMO contamination that emphasizes the need for further monitoring.

References

Ambulos N.P.Jr., Mongkolsuk S.K.O.R.N., Kaufman J.D., Lovett P.S. 1985. Chloramphenicol-induced translation of cat-86 mRNA requires two cis-acting regulatory regions. J. Bacteriol. 164: 696–703.

Areal F.J., Riesgo L. 2021. EU inspections of GM content in food and feed: Are they effective? Agriculture 11: 842.

Barbau-Piednoir E., De Keersmaecker S.C., Wuyts V., Gau C., Pirovano W., Costessi A., Philipp P., Roosens N.H. 2015. Genome sequence of EU-unauthorized genetically modified Bacillus subtilis strain 2014-3557 overproducing riboflavin, isolated from a vitamin B2 80% feed additive. Genome Announc. 3: e00214-15.

Berbers B., Saltykova A., Garcia-Graells C., Philipp P., Arella F., Marchal K., Winand R., Vanneste K., Roosens N.H.C., De Keersmaecker S.C. 2020. Combining short and long read sequencing to characterize antimicrobial resistance genes on plasmids applied to an unauthorized genetically modified Bacillus. Sci. Rep. 10: 4310.

Bernal V., Sevilla Á., Cánovas M., Iborra J.L. 2007. Production of L-carnitine by secondary metabolism of bacteria. Microb. Cell Fact. 6: 31.

Bohanec M., Boshkoska B.M., Prins T.W., Kok E.J. 2017. SIGMO: A decision support System for Identification of genetically modified food or feed products. Food Control 71: 168–177.

Bolyen E., Rideout J.R., Dillon M.R., Bokulich N.A., Abnet C., Al-Ghalith G.A., Alexander H., Alm E.J., Arumugam M., Asnicar F., Bai Y., Bisanz J.E., Bittinger K., Brejnrod A., Brislawn C.J., Brown C.T., Callahan B.J., Caraballo-Rodríguez A.M., Chase J., Cope E.K., Da Silva R., Diener C., Dorrestein P.C., Douglas G.M., Durall D.M., Duvallet C., Edwardson C.F., Ernst M., Estaki M., Fouquier J., Gauglitz J.M., Gibbons S.M., Gibson D.L., Gonzalez A., Gorlick K., Guo J., Hillmann B., Holmes S., Holste H., Huttenhower C., Huttley G.A., Janssen S., Jarmusch A.K., Jiang L., Benjamin D. Kaehler B.D., Kang K.B., Keefe C.R., Keim P., Kelley S.T., Knights D., Koester I., Kosciolek T., Kreps J., Langille M.G.I., Lee J., Ley R., Liu Y.-X., Loftfield E., Lozupone C., Maher M., Marotz C., Martin B.D., McDonald D., McIver L.J., Melnik A.V., Metcalf J.L., Morgan S.C., Morton J.T., Naimey A.T., Navas-Molina J.A., Nothias L.F., Orchanian S.B., Pearson T., Peoples S.L., Petras D., Preuss M.L., Pruesse E., Rasmussen L.B., Rivers A., Robeson M.S.II, Rosenthal P., Segata N., Shaffer M., Shiffer A., Sinha R., Song S.J., Spear J.R., Swafford A.D., Thompson L.R., Torres P.J., Trinh P., Tripathi A., Turnbaugh P.J., Ul-Hasan S., van der Hooft J.J.J., Vargas F., Vázquez-Baeza Y., Vogtmann E., von Hippel M., Walters W., Wan Y., Wang M., Warren J., Weber K.C., Williamson C.H.D., Willis A.D. , Xu Z.Z., Zaneveld J.R., Zhang Y., Zhu Q., Knight R., Caporaso J.G. 2019. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37: 852–857.

Cuello D.T.M., De Faria R.N., Figueiredo A.M., Burnquist H.L. 2020. EU border rejections of unauthorized GM food and the trade deflection effects. Italian Rev. Agric. Econ. 75: 65–76.

Debode F., Janssen E., Marien A., Devlin R.H., Lieske K., Mankertz J., Berben G. 2018. Detection of transgenic Atlantic and Coho salmon by real-time PCR. Food Anal. Methods 11: 2396–2406.

Deckers M., Vanneste K., Winand R., Keersmaecker S.C.J., Denayer S., Heyndrickx M., Deforce D., Fraiture M.A., Roosens N.H.C. 2020. Strategy for the identification of micro-organisms producing food and feed products: Bacteria producing food enzymes as study case. Food Chem. 305: 125431.

Deckers M., Deforce D., Fraiture M.A., Roosens N.H. 2020a. Genetically modified micro-organisms for industrial food enzyme production: an overview. Foods 9: 326.

Deckers M., De Loose M., Papazova N., Deforce D., Fraiture M.A., Roosens N.H. 2022. First monitoring for unauthorized genetically modified bacteria in food enzymes from the food market. Food Control 135: 108665.

Fraiture M.A., Deckers M., Papazova N., Roosens N.H. 2020. Strategy to detect genetically modified bacteria carrying tetracycline resistance gene in fermentation products. Food Anal. Meth. 13: 1929–1937.

Fraiture M.A., Deckers M., Papazova N., Roosens N.H.C. 2020a. Detection strategy targeting a chloramphenicol resistance gene from genetically modified bacteria in food and feed products. Food Control 18: 106873.

Fraiture M.A., Deckers M., Papazova N., Roosens N.H.C. 2020b. Are antimicrobial resistance genes key targets to detect genetically modified microorganisms in fermentation products? Int. J. Food Microbiol. 331: 108749.

Fraiture M.A., Deckers M., Papazova N., Roosens N.H.C. 2020c. Strategy to detect genetically modified bacteria carrying tetracycline resistance gene in fermentation products. Food Anal. Meth. 13: 1929–1937.

Fraiture M.A., Bogaerts B., Winand R., Deckers M., Papazova N., Vanneste K., De Keersmaecker S.C.J., Roosens N.H.C. 2020d. Identification of an unauthorized genetically modified bacteria in food enzyme through whole-genome sequencing. Sci. Rep. 10: 7094.

Fraiture M.A., Joly L., Vandermassen E., Delvoye M., Van Geel D., Michelet J.Y., Van Hoeck E., De Jaeger N., Papazova N., Roosens N.H.C. 2021. Retrospective survey of unauthorized genetically modified bacteria harbouring antimicrobial resistance genes in feed additive vitamin B2 commercialized in Belgium: Challenges and solutions. Food Control 119: 107476.

Fujio T., Teshiba S., Maruyama A. 1997. Construction of a plasmid carrying both CTP synthetase and a fused gene formed from cholinephosphate cytidylyltransferase and choline kinase genes and its application to industrial CDP-choline production: enzymatic production of CDP-choline from orotic acid (part II). Biosci. Biotechnol. Biochem. 61: 960–964.

Fujio T., Maruyama A. 1997. Enzymatic production of pyrimidine nucleotides using Corynebacterium ammoniagenes cells and recombinant Escherichia coli cells: enzymatic production of CDP-choline from orotic acid and choline chloride (part I). Biosci. Biotechnol. Biochem. 61: 956–959.

Ginésy M., Rusanova-Naydenova D., Rova U. 2017. Tuning of the carbon-to-nitrogen ratio for the production of L-arginine by Escherichia coli. Fermentation 3: 60.

Jacchia S., Bogni A., Mazzara M., Kreysa J. 2014. Event-specific method for the quantification of oilseed rape DP-073496-4 using real-time PCR. European Union Reference Laboratory for GM Food and Feed, Ispra. 34 p.

Johansson M.H., Bortolaia V., Tansirichaiya S., Aarestrup F.M., Roberts A.P., Petersen T.N. 2021. Detection of mobile genetic elements associated with antibiotic resistance in Salmonella enterica using a newly developed web tool: MobileElementFinder. J. Antimicrob. Chemother. 76: 101–109.

Kallscheuer N. 2018. Engineered microorganisms for the production of food additives approved by the European Union—a systematic analysis. Front. Microbiol. 9: 1746.

Kim J.H., Song J.Y., Hong Y., Kim H.Y. 2016. Monitoring of genetically modified soybean events in sausage products in South Korea. Food Control 67: 63–67.

Kleter G., McFarland S., Bach A., Bernabucci U., Bikker P., Busani, L., Kok E., Kostov K., Nadal A., Pla M., Ronchi B., Terre M., Einspanier, R. 2018. Surveying selected European feed and livestock production chains for features enabling the case-specific post-market monitoring of livestock for intake and potential health impacts of animal feeds derived from genetically modified crops. Food Chem. Toxicol. 117: 66–78.

Kyrova V., Ostry V., Surmanova P., Ruprich J. 2018. Monitoring of genetically modified food on the Czech food market and a cross-country comparison. Acta Aliment. 47: 10-16.

Ma W., Cao W., Zhang H., Chen K., Li Y., Ouyang P. 2015. Enhanced cadaverine production from L-lysine using recombinant Escherichia coli co-overexpressing CadA and CadB. Biotechnol. Lett. 37: 799–806.

Markey B., Leonard F., Archambault M., Cullinane A., Maguire D. 2013. Bacillus species. In: Clinical Veterinary Microbiology. 2nd Ed. Elsevier Health Sciences, 656 p.

Nilsson R.H., Larsson K.H., Taylor A.F.S., Bengtsson-Palme J., Jeppesen T.S., Schigel D., Kennedy P., Picard K., Glockner F.O., Tedersoo L., Saar I., Koljalg U., Abarenkov K. 2019. The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res. 47: 259–264.

Paracchini V., Petrillo M., Reiting R., Angers-Loustau A., Wahler D., Stolz A., Schönig B., Matthies A., Bendiek J., Meinel D.M., Pecoraro S., Busch U., Patak A., Kreys J., Grohmann L. 2017. Molecular characterization of an unauthorized genetically modified Bacillus subtilis production strain identified in a vitamin B2 feed additive. Food Chem. 230: 681–689.

Park S.H., Kim H.U., Kim T.Y., Park J.S., Kim S.S., Lee S.Y. 2014. Metabolic engineering of Corynebacterium glutamicum for L-arginine production. Nature Commun. 5: 1–9.

Pigłowski M. 2020. Food hazards on the European Union market: The data analysis of the Rapid Alert System for Food and Feed. Food Sci. Nutr. 8: 1603–1627.

Pigłowski, M., Niewczas-Dobrowolska, M. 2023. Hazards in products of plant origin reported in the Rapid Alert System for Food and Feed (RASFF) from 1998 to 2020. Sustainability 15: 8091.

Price B., Cotter J. 2014. The GM Contamination Register: a review of recorded contamination incidents associated with genetically modified organisms (GMOs), 1997–2013. Int. J. Food Contam. 1: 1–13.

Quast C., Pruesse E., Yilmaz P., Gerken J., Schweer T., Yarza P., Peplies J., Glöckner F.O. 2012. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41: 590–596.

Randegger C.C., Keller A., Irla M., Wada A., Hächler H. 2000. Contribution of natural amino acid substitutions in SHV extended-spectrum β-lactamases to resistance against various β-lactams. Antimicrob. Agents Chemother. 44: 2759–2763.

Rostoks N., Grantiņa-Ieviņa L., Ieviņa B., Evelone V., Valciņa O., Aleksejeva I. 2019. Genetically modified seeds and plant propagating material in Europe: potential routes of entrance and current status. Heliyon 5: e01242.

Sanchez S., Rodríguez-Sanoja R., Ramos A., Demain A.L. 2018. Our microbes not only produce antibiotics, they also overproduce amino acids. J. Antibiot. 71: 26–36.

Turkec A., Lucas S.J., Karlik E. 2016a. Monitoring the prevalence of genetically modified (GM) soybean in Turkish food and feed products. Food Control 59: 766–772.

Turkec A., Lucas S.J., Karlik E. 2016b. Monitoring the prevalence of genetically modified maize in commercial animal feeds and food products in Turkey. J. Sci. Food Agric. 96: 3173–3179.

Turnbull C., Lillemo M., Hvoslef-Eide T.A. 2021. Global regulation of genetically modified crops amid the gene edited crop boom – a review. Front. Plant Sci. 12: 630396.

Ujhelyi G., Vajda B., Béki E., Neszlényi K., Jakab J., Jánosi A., Nemedi E., Gelencsér É. 2008. Surveying the RR soy content of commercially available food products in Hungary. Food Control 19: 967–973.

Utagawa T. 2004. Production of arginine by fermentation. J. Nutr. 134: 2854–2857.

Vassilev I., Gießelmann G., Schwechheimer S.K., Wittmann C., Virdis B., Krömer J.O. 2018. Anodic electro‐fermentation: Anaerobic production of L‐lysine by recombinant Corynebacterium glutamicum. Biotechnol. Bioeng. 115: 1499–1508.

Wang Y.Y., Xu J.Z., Zhang W.G. 2019. Metabolic engineering of L-leucine production in Escherichia coli and Corynebacterium glutamicum: a review. Crit. Rev. Biotechnol. 39: 633–647.

Wang Y.Y., Shi K., Chen P., Zhang F., Xu J.Z., Zhang W.G. 2020. Rational modification of the carbon metabolism of Corynebacterium glutamicum to enhance L-leucine production. J. Industr. Microbiol. Biotechnol. 47: 485–495.

Zdjelar G., Nikolić Z., Vasiljević I., Bajić B., Jovičić D., Ignjatov M., Milošević D. 2013. Detection of genetically modified soya, maize, and rice in vegetarian and healthy food products in Serbia. Czech J. Food Sci. 31: 43–48.

Downloads

Published

2024-10-07

How to Cite

Grantiņa-Ieviņa, L., Boikmanis, G., Ortlova, K., Mališevs, A., Ķibilds, J., Kovaļčuka, L., Miltiņa, E., Jēriņa, A., Avsejenko, J., Skrebeļa, L. L., Zariņa, E., Kropačeva, L., Bebre, E., & Rostoks, N. (2024). Screening for contamination with genetically modified organisms in food, feed and their additives obtained in retail and online shops in Latvia. Environmental and Experimental Biology, 22(3), 105-128. https://doi.org/10.22364/eeb.22.11