Influence of bark chemistry on distribution of epiphytic mosses on basal trunk of Cryptomeria japonica

Authors

  • Kheyali Halder Department of Botany, Acharya Prafulla Chandra Roy Government College, Siliguri-734010, Dist. Darjeeling, West Bengal, India
  • Subhra Chakraborti Molecular Biology Laboratory, RKVY Uttar Banga Krishi Vishwavidyalaya, Pundibari-736165, West Bengal, India
  • Projjwal Chandra Lama Post Graduate Department of Botany, Darjeeling Government College, Darjeeling-734101, West Bengal, India
  • Souvik Mitra Department of Botany, Taki Government College, Taki-743429, North 24 Parganas, West Bengal, India

DOI:

https://doi.org/10.22364/eeb.22.10

Keywords:

bark acidity, Cryptomeria japonica, epiphyte, moss, species richness

Abstract

Epiphytic mosses are integral parts of forest community structure in the Darjeeling Hills of the Eastern Himalayan region with remarkable contributions to the ecosystem functionality. The study was framed to assess the richness and spatial distribution of epiphytic mosses growing on the basal trunk of Cryptomeria japonica (Thunb. ex. L.) D.Don, and also to evaluate the explanatory host traits for shaping the moss assemblage. Field measurements and sampling were performed near Lamahatta village within Darjeeling district on 270 microplots placed on tree trunks. A total of twelve mosses represented by the members of Dicranales and Hypnales were recorded. Low species diversity was observed with dominance and maximum cover of Syrrhopodon confertus. Canonical correspondence analysis predicted a distinct combination of chemical requirements for local colonization of each moss. The results also demonstrated influence of bark acidic inputs on abundance and co-existence of bryophytes. The outcome can be potentially helpful in depicting the community structure of non-vascular epiphytes, which may further be considered while developing forest management strategies.

References

Alam A., Sharma V., Sharma S.C. 2011. Bryoflora of Ranthambhore Tiger Reserve, Rajasthan (India). Arch. Bryol. 106: 1–8.

Azuma W.A., Komada N., Ogawa Y., Ishii H., Nakanishi A., Noguchi Y., Kanzaki M. 2022. One large tree crown can be defined as a local hotspot for plant species diversity in a forest ecosystem: a case study in temperate old-growth forest. Plant Ecol. 223: 99–112. DOI: https://doi.org/10.1007/s11258-021-01192-8

Bansal P., Nath V., Chaturvedi S.K. 2011. Epiphytic bryophytes on Thuja orientalis in Nagaland, North-eastern India. Bangladesh J. Plant Taxon. 18: 163–167. DOI: https://doi.org/10.3329/bjpt.v18i2.9303

Bargali R., Awasthi V., Pande N. 2014. Ecological study of bryophytes on Platanus orientalis L. trees in Nainital (Western Himalaya). Amer. J. Plant Sci. 5: 3880–3888. DOI: https://doi.org/10.4236/ajps.2014.526406

Bates J.W. 1992. Influence of chemical and physical factors on Quercus and Fraxinus epiphytes at Loch Sunart, western Scotland: a multivariate analysis. J. Ecol. 80: 163–179. DOI: https://doi.org/10.2307/2261073

Bates J.W., Proctor M.C.F., Preston C.D., Hodgetts N.G., Perry A.R. 1997. Occurrence of epiphytic bryophytes in a ‘tetrad’transect across southern Britain 1. Geographical trends in abundance and evidence of recent change. J. Bryol. 19: 685–714. DOI: https://doi.org/10.1179/jbr.1997.19.4.685

Berdugo M.B., Gradstein S.R., Guerot L., León‐Yánez S., Bendix J., Bader M.Y. 2022. Diversity patterns of epiphytic bryophytes across spatial scales: Species‐rich crowns and beta‐diverse trunks. Biotropica 54: 893–905. DOI: https://doi.org/10.1111/btp.13113

Blatt-Janmaat K., Neumann S., Schmidt F., Ziegler J., Qu Y., Peters K. 2023. Impact of in vitro phytohormone treatments on the metabolome of the leafy liverwort Radula complanata (L.) Dumort. Metabolomics 19: 17. DOI: https://doi.org/10.1007/s11306-023-01979-y

Callaway R.M., Reinhart K.O., Moore G.W., Moore D.J., Pennings S.C. 2002. Epiphyte host preferences and host traits: mechanisms for species-specific interactions. Oecologia 132: 221–230. DOI: https://doi.org/10.1007/s00442-002-0943-3

Chang C.C., Yang M.H., Wen H.M., Chern J.C. 2002. Estimation of total flavonoid content in propolis by two complementary colorimetric methods. J. Food Drug Anal. 10: 178–182. DOI: https://doi.org/10.38212/2224-6614.2748

Cleavitt N. 2001. Disentangling moss species limitations: the role of physiologically based substrate specificity for six species occurring on substrates with varying pH and percent organic matter. Bryologist 104: 59–68. DOI: https://doi.org/10.1639/0007-2745(2001)104[0059:DMSLTR]2.0.CO;2

Colwell R.K., Coddington J.A. 1994. Estimating terrestrial biodiversity through extrapolation. Phil. Trans. Royal Soc. London B 345: 101–118. DOI: https://doi.org/10.1098/rstb.1994.0091

Coxson D.S. 1991. Nutrient release from epiphytic bryophytes in tropical montane rain forest (Guadeloupe). Canad. J. Bot. 69: 2122–2129. DOI: https://doi.org/10.1139/b91-266

Ezer T. 2017. Epiphytic bryophyte communities and succession on Platanus orientalis trees in Kadincikvalley (Mersin/Turkey). Pak. J. Bot. 49: 623–630.

Fick S.E., Hijmans R.J. 2017. WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37: 4302–4315. DOI: https://doi.org/10.1002/joc.5086

Fojcik B., Chruścińska M., Nadgórska-Socha A., Stebel A. 2015. Determinants of occurrence of epiphytic mosses in the urban environment; a case study from Katowice city (S Poland). Acta Mus. Siles. Sci. Natur. 64: 275–286. DOI: https://doi.org/10.1515/cszma-2015-0035

Gabriel R., Bates J.W. 2005. Bryophyte community composition and habitat specificity in the natural forests of Terceira, Azores. Plant Ecol. 177: 125–144. DOI: https://doi.org/10.1007/s11258-005-2243-6

Gangulee H.C. 1969–1980. Mosses of Eastern India and Adjacent Regions. Vol. I–III. Books and Allied Limited, Calcutta.

Gauslaa Y. 1985. The ecology of Lobarion pulmonariae and Parmelion caperatae in Quercus dominated forests in south-west Norway. Lichenologist 17: 117–140. DOI: https://doi.org/10.1017/S0024282985000184

Glime J.M. 2007. Bryophyte Ecology. Volume 1. Physiological Ecology. Michigan Technological University and the International Association of Bryologists, Houghton.

González-Mancebo J.M., Losada-Lima A., McAlister S. 2003. Host specificity of epiphytic bryophyte communities of a laurel forest on Tenerife (Canary Islands, Spain). Bryologist 106: 383–394. DOI: https://doi.org/10.1639/04

Gotelli N.J., Colwell R.K. 2001. Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol. Lett. 4: 379–391. DOI: https://doi.org/10.1046/j.1461-0248.2001.00230.x

Gustafsson L., Eriksson I. 1995. Factors of importance for the epiphytic vegetation of aspen Populus tremula with special emphasis on bark chemistry and soil chemistry. J. Appl. Ecol. 32: 412–424. DOI: https://doi.org/10.2307/2405107

Hämäläinen A., Fahrig L., Strengbom J., Ranius T. 2023. Effective management for deadwood‐dependent lichen diversity requires landscape‐scale habitat protection. J. Appl. Ecol. 60: 1597–1606. DOI: https://doi.org/10.1111/1365-2664.14429

Hammer O., Harper D.A.T., Ryan P.D. 2001. PAST: Paleontological statistics software package for education and data analysis. Paleontol Electron. 4: 4.

Hollander M., Wolfe D.A. 1973. Nonparametric Statistical Methods. John Wiley and Sons, New York, USA.

Hydbom S., Odman A.M., Olsson P.A., Cornberg N. 2012. The effects of pH and distribution on the bryophyte flora in calcareous sandy grasslands. Nord. J. Bot. 30: 446–452. DOI: https://doi.org/10.1111/j.1756-1051.2012.01463.x

Király I., Nascimbene J., Tinya F., Ódor P. 2013. Factors influencing epiphytic bryophyte and lichen species richness at different spatial scales in managed temperate forests. Biodivers. Conserv. 22: 209–223. DOI: https://doi.org/10.1007/s10531-012-0415-y

Kubesova S., Chytry M. 2005. Diversity of bryophytes on treeless cliffs and talus slopes in a forested European landscape. J. Bryol. 27: 35–46. DOI: https://doi.org/10.1179/174328205X40563

Larsen R.S., Bell J.N.B., James P.W., Chimonides P.J., Rumsey F.J., Tremper A., Purvis O.W. 2007. Lichen and bryophyte distribution on oak in London in relation to air pollution and bark acidity. Environ. Pollut. 146: 332–340. DOI: https://doi.org/10.1016/j.envpol.2006.03.033

Mežaka A., Znotiņa V. 2006. Epiphytic bryophytes in old growth forests of slopes, screes and ravines in north-west Latvia. Acta Univ. Latv. 710: 103–116.

Mitchell R.J., Hewison R., Beaton J., Douglass J.R. 2021. Identifying substitute host tree species for epiphytes: The relative importance of tree size and species, bark and site characteristics. Appl. Veget. Sci. 24: e12569. DOI: https://doi.org/10.1111/avsc.12569

Mukhia S., Mandal P., Singh D.K., Singh D. 2019. The abundance of epiphytic liverworts on the bark of Cryptomeria japonica in relation to different physical and biochemical attributes, found in Senchal Wildlife Sanctuary, Darjeeling, Eastern Himalaya. BMC Ecol. 19: 37. DOI: https://doi.org/10.1186/s12898-019-0253-9

Nath V., Pande N., Asthana A.K., Gupta R. 2012. Epiphytic moss flora of Pachmarhi Biosphere Reserve (MP): An important aspect of bryophyte diversity. Natl. Acad. Sci. Lett. 35: 195–200. DOI: https://doi.org/10.1007/s40009-012-0015-0

Paukov A., Teptina A., Ermoshin A., Kruglova E., Shabardina L. 2022. The role of secondary metabolites and bark chemistry in shaping diversity and abundance of epiphytic lichens. Front. Forests Global Change 5: 828211. DOI: https://doi.org/10.3389/ffgc.2022.828211

Pereira I., Mueller F., Moya Moraga M.R. 2014. Influence of Nothofagus bark pH on the lichen and bryophytes richness, Central Chile. Gayana Bot. 71: 120–130 DOI: https://doi.org/10.4067/S0717-66432014000100012

Printarakul N., Meeinkuirt W. 2022. The bryophyte community as bioindicator of heavy metals in a waterfall outflow. Sci. Rep. 11: 6942. DOI: https://doi.org/10.21203/rs.3.rs-967396/v1

Putna S., Mežaka A. 2014. Preferences of epiphytic bryophytes for forest stand and substrate in North-East Latvia. Folia Cryptogam. Estonica 51: 75–83. DOI: https://doi.org/10.12697/fce.2014.51.08

Ranius T., Johansson P., Berg N., Niklasson M. 2008. The influence of tree age and microhabitat quality on the occurrence of crustose lichens associated with old oaks. J. Veg. Sci. 19: 653–662. DOI: https://doi.org/10.3170/2008-8-18433

Reese W.D., Bartlett J.K. 1982. Syrrhopodon fimbriatulus C. Müll., and the family Calymperaceae (Musci), new to New Zealand; and notes on Calymperaceae from the New Zealand Island territories. J. Bryol. 12: 209–214. DOI: https://doi.org/10.1179/jbr.1982.12.2.209

Rose F. 1992. Temperate forest management: its effect on bryophyte and lichen floras and habitats. In: Bates J.W., Farmer A.M. (Eds.) Bryophytes and Lichens in a Changing Environment. Clarendon Press, Oxford, pp. 211–233. DOI: https://doi.org/10.1093/oso/9780198542919.003.0008

Shannon C.E., Weaver W. 1963. The Mathematical Theory of Communication. University of Illinois Press, Urbana.

Shao Y., Wang S., Li Y., Chen Y., Zhao H., Wang J., Yuan Z. 2023. Importance of bark physicochemical properties in an epiphytic bryophyte community within a temperate deciduous broadleaf forest. Diversity 15: 688. DOI: https://doi.org/10.3390/d15050688

Singleton V.L., Rossi J.A. 1965. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Amer. J. Enol. Viticult. 16:144–158. DOI: https://doi.org/10.5344/ajev.1965.16.3.144

Strazdiņa L. 2010. Bryophyte community composition on an island of Lake Cieceres, Latvia: dependence on forest stand and substrate properties. Environ. Exp. Biol. 8: 49–58.

Studlar S.M. 1982. Host specificity of epiphytic bryophytes near Mountain Lake, Virginia. Bryologist 85: 37–50. DOI: https://doi.org/10.2307/3243139

Tatsumi S., Ohgue T., Azuma W.A., Nishizawa K. 2023. Bark traits affect epiphytic bryophyte community assembly in a temperate forest. Plant Ecol. 224: 1089–1095. DOI: https://doi.org/10.1007/s11258-023-01363-9

Ter Braak C.J.F. 1987. The analysis of vegetation- environment relationships by canonical correspondence analysis. Vegetatio 69: 69–77. DOI: https://doi.org/10.1007/978-94-009-4061-1_7

Ter Braak C.J.F. 1988. Partial canonical correspondence analysis. In: Classification and related methods of data analysis: proceedings of the first conference of the International Federation of Classification Societies (IFCS), Technical University of Aachen, FRG, 29 June – 1 July 1987, North-Holland, pp. 551–558.

Tyler T., Olsson P.A. 2016. Substrate pH ranges of south Swedish bryophytes – Identifying critical pH values and richness patterns. Flora 223: 74–82. DOI: https://doi.org/10.1016/j.flora.2016.05.006

Whitelaw M., Burton M.A.S. 2015. Diversity and distribution of epiphytic bryophytes on Bramley’s Seedling trees in East of England apple orchards. Glob. Ecol. Conserv. 4: 380–387. DOI: https://doi.org/10.1016/j.gecco.2015.07.014

Wiklund K., Rydin H. 2004. Ecophysiological constraints on spore establishment in bryophytes. Funct. Ecol. 18: 907–913. DOI: https://doi.org/10.1111/j.0269-8463.2004.00906.x

Wolf J.H. 1993. Diversity patterns and biomass of epiphytic bryophytes and lichens along an altitudinal gradient in the northern Andes. Ann. Missouri Bot. Gard. 80: 928–960. DOI: https://doi.org/10.2307/2399938

Zechmeister H.G., Grodzińska K., Szarek-Łukaszewska G. 2003. Bryophytes. Trace Metals and Other Contaminants in the Environment 6: 329–375. DOI: https://doi.org/10.1016/S0927-5215(03)80140-6

Downloads

Published

2024-10-07

How to Cite

Halder, K., Chakraborti, S., Lama, P. C., & Mitra, S. (2024). Influence of bark chemistry on distribution of epiphytic mosses on basal trunk of Cryptomeria japonica. Environmental and Experimental Biology, 22(3), 95-104. https://doi.org/10.22364/eeb.22.10