Unravelling the role of Set2 protein domains in H3K36 methylation in Saccharomyces cerevisiae
DOI:
https://doi.org/10.22364/eeb.22.09Keywords:
halophyte, ion accumulation, Mertensia maritima, mineral nutrition, propagation, salinity, temporary immersion system, tissue cultureAbstract
Histone methylation plays a crucial role in gene expression and chromatin structure regulation. In Saccharomyces cerevisiae, the Set2 protein is responsible for the methylation of histone H3 at lysine 36 (H3K36), which is associated with transcriptional regulation, RNA processing, and DNA repair. This study investigates the specific functions of individual domains within the yeast Set2 protein by utilizing PCR-based domain deletions and subsequent western blot analysis to assess their impact on H3K36 methylation status. The results demonstrate that the SET domain alone is sufficient for H3K36 dimethylation, while optimal trimethylation necessitates the presence of additional domains, including the central autoinhibitory domain. Furthermore, the SRI domain is found to be essential for both di- and trimethylation when considering the full-length Set2 protein. These findings underscore the critical role of Set2 domains in modulating Set2 enzymatic activity.
References
Avvakumov N., Nourani A., Cote J. 2011. Histone chaperones: modulators of chromatin marks. Mol. Cell 41: 502–514. DOI: https://doi.org/10.1016/j.molcel.2011.02.013
Bannister A.J., Kouzarides T. 2011. Regulation of chromatin by histone modifications. Cell Res. 21: 381–395. DOI: https://doi.org/10.1038/cr.2011.22
Carey M., Li B., Workman J.L. 2006. RSC exploits histone acetylation to abrogate the nucleosomal block to RNA polymerase II elongation. Mol. Cell 24: 481–487. DOI: https://doi.org/10.1016/j.molcel.2006.09.012
Carrozza M.J., Li B., Florens L., Suganuma T., Swanson S.K., Lee K.K., Shia W.J., Anderson S., Yates J., Washburn M.P., Workman J.L. 2005. Histone H3 methylation by Set2 directs deacetylation of coding regions by Rpd3S to suppress spurious intragenic transcription. Cell 123: 581–592. DOI: https://doi.org/10.1016/j.cell.2005.10.023
Clapier C.R., Cairns B.R. 2009. The biology of chromatin remodeling complexes. Annu. Rev. Biochem. 78: 273–304. DOI: https://doi.org/10.1146/annurev.biochem.77.062706.153223
Dahiya R., Mohammad T., Alajmi M.F., Rehman M.T., Hasan G.M., Hussain A., Hassan M.I. 2020. Insights into the conserved regulatory mechanisms of human and yeast aging. Biomolecules 10: 882. DOI: https://doi.org/10.3390/biom10060882
Davey C.A., Sargent D.F., Luger K., Maeder A.W., Richmond T.J. 2002. Solvent mediated interactions in the structure of the nucleosome core particle at 1.9 Å resolution. J. Mol. Biol. 319: 1097–1113. DOI: https://doi.org/10.1016/S0022-2836(02)00386-8
Du H.N., Fingerman I.M., Briggs S.D. 2008. Histone H3 K36 methylation is mediated by a trans-histone methylation pathway involving an interaction between Set2 and histone H4. Genes Dev. 22: 2786–2798. DOI: https://doi.org/10.1101/gad.1700008
Duns G., van den Berg E., van Duivenbode I., Osinga J., Hollema H., Hofstra R.M., Kok K. 2010. Histone methyltransferase gene SETD2 is a novel tumor suppressor gene in clear cell renal cell carcinoma. Cancer Res. 70: 4287–4291. DOI: https://doi.org/10.1158/0008-5472.CAN-10-0120
Edmunds J.W., Mahadevan L.C., Clayton A.L. 2008. Dynamic histone H3 methylation during gene induction: HYPB/Setd2 mediates all H3K36 trimethylation. EMBO J. 27: 406–420. DOI: https://doi.org/10.1038/sj.emboj.7601967
Fahey C.C., Davis I.J. 2017. SETting the stage for cancer development: SETD2 and the consequences of lost methylation. Cold Spring Harb. Perspect. Med. 7: a026468. DOI: https://doi.org/10.1101/cshperspect.a026468
Flaus A., Owen-Hughes T. 2004. Mechanisms for ATP-dependent chromatin remodelling: farewell to the tuna-can octamer? Curr. Opin. Genet. Dev. 14: 165–173. DOI: https://doi.org/10.1016/j.gde.2004.01.007
Frigerio C., Di Nisio E., Galli M., Colombo C.V., Negri R., Clerici M. 2023. The chromatin landscape around DNA double-strand breaks in yeast and its influence on DNA repair pathway choice. Int. J. Mol. Sci. 24 DOI: https://doi.org/10.3390/ijms24043248
Gurard-Levin Z.A., Quivy J.P., Almouzni G. 2014. Histone chaperones: assisting histone traffic and nucleosome dynamics. Annu. Rev. Biochem. 83: 487–517. DOI: https://doi.org/10.1146/annurev-biochem-060713-035536
Hammond C.M., Stromme C.B., Huang H., Patel D.J., Groth A. 2017. Histone chaperone networks shaping chromatin function. Nature Rev. Mol. Cell. Biol. 18: 141–158. DOI: https://doi.org/10.1038/nrm.2016.159
Jha D.K., Strahl B.D. 2014. An RNA polymerase II-coupled function for histone H3K36 methylation in checkpoint activation and DSB repair. Nature Commun. 5: 3965. DOI: https://doi.org/10.1038/ncomms4965
Kim J.H., Lee B.B., Oh Y.M., Zhu C., Steinmetz L.M., Lee Y., Kim W.K., Lee S.B., Buratowski S., Kim T. 2016. Modulation of mRNA and lncRNA expression dynamics by the Set2-Rpd3S pathway. Nature Commun. 7: 13534. DOI: https://doi.org/10.1038/ncomms13534
Kingston R.E., Bunker C.A., Imbalzano A.N. 1996. Repression and activation by multiprotein complexes that alter chromatin structure. Genes Dev. 10: 905–920. DOI: https://doi.org/10.1101/gad.10.8.905
Kizer K.O., Phatnani H.P., Shibata Y., Hall H., Greenleaf A.L., Strahl B.D. 2005. A novel domain in Set2 mediates RNA polymerase II interaction and couples histone H3 K36 methylation with transcript elongation. Mol. Cell. Biol. 25: 3305–3316. DOI: https://doi.org/10.1128/MCB.25.8.3305-3316.2005
Kouzarides T. 2007. Chromatin modifications and their function. Cell 128: 693–705. DOI: https://doi.org/10.1016/j.cell.2007.02.005
Krogan N.J., Kim M., Tong A., Golshani A., Cagney G., Canadien V., Richards D.P., Beattie B.K., Emili A., Boone C., Shilatifard A., Buratowski S., Greenblatt J. 2003. Methylation of histone H3 by Set2 in Saccharomyces cerevisiae is linked to transcriptional elongation by RNA polymerase II. Mol. Cell. Biol. 23: 4207–4218. DOI: https://doi.org/10.1128/MCB.23.12.4207-4218.2003
Kulaeva O.I., Gaykalova D.A., Pestov N.A., Golovastov V.V., Vassylyev D.G., Artsimovitch I., Studitsky V.M. 2009. Mechanism of chromatin remodeling and recovery during passage of RNA polymerase II. Nature Struct. Mol. Biol. 16: 1272–1278. DOI: https://doi.org/10.1038/nsmb.1689
Kulaeva O.I., Hsieh F.K., Studitsky V.M. 2010. RNA polymerase complexes cooperate to relieve the nucleosomal barrier and evict histones. Proc. Natl. Acad. Sci. USA 107: 11325–11330. DOI: https://doi.org/10.1073/pnas.1001148107
Lam U.T.F., Chen E.S. 2022. Molecular mechanisms in governing genomic stability and tumor suppression by the SETD2 H3K36 methyltransferase. Int. J. Biochem. Cell. Biol. 144: 106155. DOI: https://doi.org/10.1016/j.biocel.2021.106155
Lam U.T.F., Tan B.K.Y., Poh J.J.X., Chen E.S. 2022. Structural and functional specificity of H3K36 methylation. Epigenet. Chromat. 15: 17. DOI: https://doi.org/10.1186/s13072-022-00446-7
Lee J.S., Shilatifard A. 2007. A site to remember: H3K36 methylation a mark for histone deacetylation. Mutat. Res. 618: 130–134. DOI: https://doi.org/10.1016/j.mrfmmm.2006.08.014
Li B., Howe L., Anderson S., Yates J.R., 3rd, Workman J.L. 2003. The Set2 histone methyltransferase functions through the phosphorylated carboxyl-terminal domain of RNA polymerase II. J. Biol. Chem. 278: 8897–8903. DOI: https://doi.org/10.1074/jbc.M212134200
Li J., Kluiver J., Osinga J., Westers H., van Werkhoven M.B., Seelen M.A., Sijmons R.H., van den Berg A., Kok K. 2016. Functional studies on primary tubular epithelial cells indicate a tumor suppressor role of SETD2 in clear cell renal cell carcinoma. Neoplasia 18: 339–346. DOI: https://doi.org/10.1016/j.neo.2016.04.005
Lim K.K., Nguyen T.T.T., Li A.Y., Yeo Y.P., Chen E.S. 2018. Histone H3 lysine 36 methyltransferase mobilizes NER factors to regulate tolerance against alkylation damage in fission yeast. Nucleic Acids Res. 46: 5061–5074. DOI: https://doi.org/10.1093/nar/gky245
Luger K., Mader A.W., Richmond R.K., Sargent D.F., Richmond T.J. 1997. Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature 389: 251–260. DOI: https://doi.org/10.1038/38444
Ma C., Liu M., Feng W., Rao H., Zhang W., Liu C., Xu Y., Wang Z., Teng Y., Yang X., Ni L., Xu J., Gao W.Q., Lu B., Li L. 2023. Loss of SETD2 aggravates colorectal cancer progression caused by SMAD4 deletion through the RAS/ERK signalling pathway. Clin. Transl. Med. 13: e1475. DOI: https://doi.org/10.1002/ctm2.1475
Marino-Ramirez L., Jordan I.K., Landsman D. 2006. Multiple independent evolutionary solutions to core histone gene regulation. Genome Biol. 7: R122. DOI: https://doi.org/10.1186/gb-2006-7-12-r122
McDaniel S.L., Hepperla A.J., Huang J., Dronamraju R., Adams A.T., Kulkarni V.G., Davis I.J., Strahl B.D. 2017. H3K36 methylation regulates nutrient stress response in Saccharomyces cerevisiae by enforcing transcriptional fidelity. Cell Rep. 19: 2371–2382. DOI: https://doi.org/10.1016/j.celrep.2017.05.057
Niu N., Lu P., Yang Y., He R., Zhang L., Shi J., Wu J., Yang M., Zhang Z.G., Wang L.W., Gao W.Q., Habtezion A., Xiao G.G., Sun Y., Li L., Xue J. 2020. Loss of Setd2 promotes Kras-induced acinar-to-ductal metaplasia and epithelia-mesenchymal transition during pancreatic carcinogenesis. Gut 69: 715–726. DOI: https://doi.org/10.1136/gutjnl-2019-318362
Pai C.C., Deegan R.S., Subramanian L., Gal C., Sarkar S., Blaikley E.J., Walker C., Hulme L., Bernhard E., Codlin S., Bahler J., Allshire R., Whitehall S., Humphrey T.C. 2014. A histone H3K36 chromatin switch coordinates DNA double-strand break repair pathway choice. Nature Commun. 5: 4091. DOI: https://doi.org/10.1038/ncomms5091
Pai C.C., Kishkevich A., Deegan R.S., Keszthelyi A., Folkes L., Kearsey S.E., De Leon N., Soriano I., de Bruin R.A.M., Carr A.M., Humphrey T.C. 2017. Set2 methyltransferase facilitates DNA replication and promotes genotoxic stress responses through MBF-dependent transcription. Cell Rep. 20: 2693–2705. DOI: https://doi.org/10.1016/j.celrep.2017.08.058
Paranjape S.M., Kamakaka R.T., Kadonaga J.T. 1994. Role of chromatin structure in the regulation of transcription by RNA polymerase II. Annu. Rev. Biochem. 63: 265–297. DOI: https://doi.org/10.1146/annurev.bi.63.070194.001405
Pfister S.X., Ahrabi S., Zalmas L.P., Sarkar S., Aymard F., Bachrati C.Z., Helleday T., Legube G., La Thangue N.B., Porter A.C., Humphrey T.C. 2014. SETD2-dependent histone H3K36 trimethylation is required for homologous recombination repair and genome stability. Cell Rep. 7: 2006–2018. DOI: https://doi.org/10.1016/j.celrep.2014.05.026
Pryde F., Jain D., Kerr A., Curley R., Mariotti F.R., Vogelauer M. 2009. H3 k36 methylation helps determine the timing of cdc45 association with replication origins. PLoS One 4: e5882. DOI: https://doi.org/10.1371/journal.pone.0005882
Putnam C.D., Allen-Soltero S.R., Martinez S.L., Chan J.E., Hayes T.K., Kolodner R.D. 2012. Bioinformatic identification of genes suppressing genome instability. Proc. Natl. Acad. Sci. USA 109: E3251–3259. DOI: https://doi.org/10.1073/pnas.1216733109
Ruthenburg A.J., Li H., Patel D.J., Allis C.D. 2007. Multivalent engagement of chromatin modifications by linked binding modules. Nature Rev. Mol. Cell. Biol. 8: 983–994. DOI: https://doi.org/10.1038/nrm2298
Saha A., Wittmeyer J., Cairns B.R. 2006. Chromatin remodelling: the industrial revolution of DNA around histones. Nature Rev. Mol. Cell. Biol. 7: 437–447. DOI: https://doi.org/10.1038/nrm1945
Sharda A., Humphrey T.C. 2022. The role of histone H3K36me3 writers, readers and erasers in maintaining genome stability. DNA Repair 119: 103407. DOI: https://doi.org/10.1016/j.dnarep.2022.103407
Smith C.L., Peterson C.L. 2005. ATP-dependent chromatin remodeling. In: Schatten G.P. (Ed.) Current Topics in Developmental Biology. Vol. 65. Elsevier Academic Press, Amsterdam, pp. 115–148. DOI: https://doi.org/10.1016/S0070-2153(04)65004-6
Strahl B.D., Grant P.A., Briggs S.D., Sun Z.W., Bone J.R., Caldwell J.A., Mollah S., Cook R.G., Shabanowitz J., Hunt D.F., Allis C.D. 2002. Set2 is a nucleosomal histone H3-selective methyltransferase that mediates transcriptional repression. Mol. Cell. Biol. 22: 1298–1306. DOI: https://doi.org/10.1128/MCB.22.5.1298-1306.2002
Tsang J.Y., Lai S.T., Ni Y.B., Shao Y., Poon I.K., Kwan J.S., Chow C., Shea K.H., Tse G.M. 2021. SETD2 alterations and histone H3K36 trimethylation in phyllodes tumor of breast. Breast Cancer Res. Treat. 187: 339–347. DOI: https://doi.org/10.1007/s10549-021-06181-z
Tsukiyama T., Wu C. 1997. Chromatin remodeling and transcription. Curr. Opin. Genet. Dev. 7: 182–191. DOI: https://doi.org/10.1016/S0959-437X(97)80127-X
van Steensel B. 2011. Chromatin: constructing the big picture. EMBO J. 30: 1885–1895. DOI: https://doi.org/10.1038/emboj.2011.135
Venkatesh S., Workman J.L. 2013. Set2 mediated H3 lysine 36 methylation: regulation of transcription elongation and implications in organismal development. WIRES Dev. Biol. 2: 685–700. DOI: https://doi.org/10.1002/wdev.109
Wagner E.J., Carpenter P.B. 2012. Understanding the language of Lys36 methylation at histone H3. Nature Rev. Mol. Cell. Biol. 13: 115–126. DOI: https://doi.org/10.1038/nrm3274
Wen H., Li Y., Xi Y., Jiang S., Stratton S., Peng D., Tanaka K., Ren Y., Xia Z., Wu J., Li B., Barton M.C., Li W., Li H., Shi X. 2014. ZMYND11 links histone H3.3K36me3 to transcription elongation and tumour suppression. Nature 508: 263–268. DOI: https://doi.org/10.1038/nature13045
Winston F., Dollard C., Ricupero-Hovasse S.L. 1995. Construction of a set of convenient Saccharomyces cerevisiae strains that are isogenic to S288C. Yeast 11: 53–55. DOI: https://doi.org/10.1002/yea.320110107
Workman J.L. 2006. Nucleosome displacement in transcription. Genes Dev. 20: 2009–2017. DOI: https://doi.org/10.1101/gad.1435706
Xiao C., Fan T., Tian H., Zheng Y., Zhou Z., Li S., Li C., He J. 2021. H3K36 trimethylation-mediated biological functions in cancer. Clin. Epigenet. 13: 199. DOI: https://doi.org/10.1186/s13148-021-01187-2
Xiao T,. Hall H., Kizer K.O., Shibata Y., Hall M.C., Borchers C.H., Strahl B.D. 2003. Phosphorylation of RNA polymerase II CTD regulates H3 methylation in yeast. Genes Dev. 17: 654–663. DOI: https://doi.org/10.1101/gad.1055503
Yang X., Chen R., Chen Y., Zhou Y., Wu C., Li Q., Wu J., Hu W.W., Zhao W.Q., Wei W., Shi J.T., Ji M. 2022. Methyltransferase SETD2 inhibits tumor growth and metastasis via STAT1-IL-8 signaling-mediated epithelial-mesenchymal transition in lung adenocarcinoma. Cancer Sci. 113: 1195–1207. DOI: https://doi.org/10.1111/cas.15299
Youdell M.L., Kizer K.O., Kisseleva-Romanova E., Fuchs S.M., Duro E., Strahl B.D., Mellor J. 2008. Roles for Ctk1 and Spt6 in regulating the different methylation states of histone H3 lysine 36. Mol. Cell. Biol. 28: 4915–4926. DOI: https://doi.org/10.1128/MCB.00001-08
Yuan W., Xie J., Long C., Erdjument-Bromage H., Ding X., Zheng Y., Tempst P., Chen S., Zhu B., Reinberg D. 2009. Heterogeneous nuclear ribonucleoprotein L is a subunit of human KMT3a/Set2 complex required for H3 Lys-36 trimethylation activity in vivo. J. Biol. Chem. 284: 15701–15707. DOI: https://doi.org/10.1074/jbc.M808431200
Zhou Y., Zheng X., Xu B., Deng H., Chen L., Jiang J. 2020. Histone methyltransferase SETD2 inhibits tumor growth via suppressing CXCL1-mediated activation of cell cycle in lung adenocarcinoma. Aging 12: 25189–25206. DOI: https://doi.org/10.18632/aging.104120
Downloads
Published
Issue
Section
License
Copyright (c) 2024 University of LatviaThis is an open access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles in this journal without asking prior permission from the publisher or the author. This is in accordance with the BOAI definition of open access. Author(s) of the published papers retain copyright, the papers are made freely available for non-commercial purposes, allowing download, reuse, reprint and distribution of the material as long as the original authors and the source are cited. This license is equivalent to the CC BY-NC-ND.