Unique adaptations and bioresources of mangrove ecosystems

Authors

  • Anjana Ramesh CEPCI Laboratory and Research Institute
  • Athira Sajan CEPCI Laboratory and Research Institute Mina Mobram
  • L.H. Namitha P.G. Department of Botany and Biotechnology, Bishop Moore College
  • N.D. Brijithlal P.G. Department of Botany and Biotechnology, Bishop Moore College
  • G. Prakash Williams P.G. Department of Botany and Biotechnology, Bishop Moore College

DOI:

https://doi.org/10.22364/eeb.22.07

Keywords:

Avicennia marina, Bruguiera gymnorrhiza, mangroves, pneumatophores, Rhizophora apiculata, rhizosphere, vivipary

Abstract

Mangroves are unique ecosystems. As they are present in a transition zone, they harbour a variety of organisms, which include microorganisms, aquatic as well as terrestrial organisms. Being present in an ever-changing and adverse environment, mangroves have developed several adaptations that make them unique. These unique features have been exploited for the isolation of various useful compounds from mangroves. The organisms associated with the mangrove ecosystem will also be well equipped to survive such extreme conditions. Microorganisms such as bacteria, fungi, actinomycetes, algae etc, survive in this changing environment, and they might be producing certain metabolites as a part of their survival mechanism, which can be exploited for the production of various compounds that are useful to mankind. Mangrove microorganisms can be used as an important source of food, medicines, enzymes, antimicrobials etc.

References

Abeysinghe P.D. 2010. Antibacterial activity of some medicinal mangroves against antibiotic resistant pathogenic bacteria. Indian J. Pharm. Sci. 72: 167–172.

Abu Zeid I. 2017. Antihyperglycemic properties of mangrove plants (Rhizophora mucronata and Avicennia marina): an overview. Adv. Biol. Res. 11: 161–170.

Alongi D.M. 2009. The Energetics of Mangrove Forests. Springer Science + Business Media, 216 p.

Alongi D.M. 2018. Blue Carbon: Coastal Sequestration for Climate Change Mitigation. Springer International Publishing, Cham, 88 p.

Alongi D.M., Christoffersen P., Tirendi F. 1993. The influence of forest type on microbial-nutrient relationships in tropical mangrove sediments. J. Exp. Marine Biol. Ecol. 171: 201–223.

Aluri J.S.R. 2022. A review of the reproductive ecology of mangrove plant species. In: Das S.C., Pullaiah, Ashton E.C. (Eds.), Mangroves: Biodiversity, Livelihoods and Conservation. Springer, Singapore, pp. 33–70.

Ball M.C. 1988. Ecophysiology of mangroves. Trees 2: 129–142.

Bandaranayake W.M. 1998. Traditional and medicinal uses of mangroves. Mangroves Salt Marshes 2: 133–148.

Behera B.C., Sethi B.K., Mishra R.R., Dutta S.K., Thatoi H.N. 2017. Microbial cellulases – diversity & biotechnology with reference to mangrove environment: A review. J. Genet. Eng. Biotechnol. 15: 197–210.

Bindiya E.S., Sreekanth P.M., Bhat S.G. 2023. Conservation and management of mangrove ecosystem in diverse perspectives. In: Sukumaran S.T., Keerthi T.R. (Eds.) Conservation and Sustainable Utilization of Bioresources. Springer, Singapore, pp. 323–352.

Carnaje M.M.D.D.C., Rebenque J.D.T., Lirio G.A.C. 2023. Antimicrobial activities of mangrove species in Southeast Asia: a systematic review. J. Sains Kesihatan Malaysia 21: 85–105.

Cerri F., Giustra M., Anadol Y., Tomaino G., Galli P., Labra M., Campone L., Colombo M. 2022. Natural products from mangroves: an overview of the anticancer potential of Avicennia marina. Pharmaceutics 14: 2793.

Chen L. 2016. Pneumatophores. In: Kennish M.J. (Ed.) Encyclopedia of Estuaries. Springer Netherlands, Dordrecht, pp. 494–494.

Cheng H., Inyang A., Li C.-D., Fei J., Zhou Y.-W., Wang Y.-S. 2020. Salt tolerance and exclusion in the mangrove plant Avicennia marina in relation to root apoplastic barriers. Ecotoxicology 29: 676–683.

Clair B., Fournier M., Prevost M.F., Beauchene J., Bardet S. 2003. Biomechanics of buttressed trees: Bending strains and stresses. Amer. J. Bot. 90: 1349–1356.

Das S.K., Samantaray D., Patra J.K., Samanta L., Thatoi H. 2016. Antidiabetic potential of mangrove plants: A review. Front. Life Sci. 9: 75–88.

Deshmukh S.K., Gupta M.K., Prakash V., Reddy M.S. 2018. Mangrove-associated fungi: a novel source of potential anticancer compounds. J. Fungi 4: 101.

dos Santos H.F., Cury J.C., do Carmo F.L., dos Santos A.L., Tiedje J., van Elsas J.D., Rosado A.S., Peixoto R.S. 2011. Mangrove bacterial diversity and the impact of oil contamination revealed by pyrosequencing: bacterial proxies for oil pollution. PLoS ONE 6: e16943.

Farnsworth E., Farrant J. 1998. Reductions in abscisic acid are linked with viviparous reproduction in mangroves. Amer. J. Bot. 85: 760–769.

Friess D.A., Rogers K., Lovelock C.E., Krauss K.W., Hamilton S.E., Lee S.Y., Lucas R., Primavera J., Rajkaran A., Shi S. 2019. The state of the world’s mangrove forests: past, present, and future. Annu. Rev. Environ. Resour. 44: 89–115.

Friess D.A., Thompson B.S., Brown B., Amir A.A., Cameron C., Koldewey H.J., Sasmito S.D., Sidik F. 2016. Policy challenges and approaches for the conservation of mangrove forests in Southeast Asia. Conserv. Biol. 30: 933–949.

Friess D.A., Yando E.S., Abuchahla G.M., Adams J.B., Cannicci S., Canty S.W., Cavanaugh K.C., Connolly R.M., Cormier N., Dahdouh-Guebas F. 2020. Mangroves give cause for conservation optimism, for now. Curr. Biol. 30: R153–R154.

Giri C., Ochieng E., Tieszen L.L., Zhu Z., Singh A., Loveland T., Masek J., Duke N. 2011. Status and distribution of mangrove forests of the world using earth observation satellite data. Global Ecol. Biogeogr. 20: 154–159.

Gislin D., Sudarsanam D., Raj G.A., Baskar K. 2018. Antibacterial activity of soil bacteria isolated from Kochi, India and their molecular identification. J. Gen. Eng. Biotechnol. 16: 287–294.

Goldberg L., Lagomasino D., Thomas N., Fatoyinbo T. 2020. Global declines in human-driven mangrove loss. Global Change Biol. 26: 5844–5855.

Gopal B., Chauhan M. 2006. Biodiversity and its conservation in the Sundarban mangrove ecosystem. Aquat. Sci. 68: 338–354.

Hogarth P.J. 1999. The Biology of Mangroves. Oxford University Press, Oxford, 228 pp.

Hogarth P.J. 2015. The Biology of Mangroves and Seagrasses. 3rd Ed. Oxford Academic Press, Oxford, 300 p.

Hong K., Gao A.-H., Xie Q.-Y., Gao H. G., Zhuang L., Lin H.-P., Yu H.-P., Li J., Yao X.-S., Goodfellow M., Ruan J.-S. 2009. Actinomycetes for marine drug discovery isolated from mangrove soils and plants in China. Mar. Drugs 7: 24–44.

Jhurani B.S., Jadhav B. 2010. Evaluation of antimicrobial properties and activity guided fractionation of mangrove species Rhizophora apiculata. Asian J. Microbiol. Biotechnol. Environ. Sci. 12: 745–750.

Jia M., Wang Z., Mao D., Ren C., Song K., Zhao C., Wang C., Xiao X., Wang Y. 2023. Mapping global distribution of mangrove forests at 10-m resolution. Sci. Bull. 68: 1306–1316.

Jia S.-L., Chi Z., Liu G.-L., Hu Z., Chi Z.-M. 2020. Fungi in mangrove ecosystems and their potential applications. Crit. Rev. Biotechnol. 40: 852–864.

Kathiresan K. 2003. Polythene and plastics-degrading microbes from the mangrove soil. Rev. Biol. Trop. 51: 629–633.

Kathiresan K., Qasim S.Z. 2005. Biodiversity of mangrove ecosystems. Conserv. Soc. 3: 537.

Kathiresan K., Selvam M.M. 2006. Evaluation of beneficial bacteria from mangrove soil. Bot. Mar. 48: 86–89.

Kavunkal H.V., Vasu, R.K. 2023. Bioprospecting of underutilised mangroves: a review based on bioactive phytochemicals of mangroves on Kerala coast, India. Acta Sci. Pharmac. Sci. 7: 33–41.

Khajure P.V., Rathod J.L. 2011. Potential anticancer activity of Acanthus inilcifolius extracted from the mangroves forest of Karwar, west coast of India. World J. Sci. Technol. 1: 1–6.

Khandan N.D., Janardhana G.R.. 2015. Isolation, identification and assessment of the antimicrobial activity of Streptomyces flavogriseus, strain ACTK2, from a soil sample from Kodagu, Karnataka State in India. Jundishapur J. Microbiol. 8: B1–B8.

Kohlmeyer J. 1969. Ecological notes on fungi in mangrove forests. Transact. British Mycol. Soc. 53: 237-250.

Kumar K., Sahu M.K., Kandasamy K. 2005. Isolation of Actinomycetes from the mangrove environment of the southeast coast of India. Ecol. Environ. Conserv. 11: 355–357.

Li M.-Y., Xiao Q., Pan J.-Y., Wu J. 2009. Natural products from semi-mangrove flora: Source, chemistry and bioactivities. Nat. Prod. Rep. 26: 281–298.

Li Y., Dong C., Xu M.-J., Lin W.-H. 2020. New alkylated benzoquinones from mangrove plant Aegiceras corniculatum with anticancer activity. J. Asian Nat. Prod. Res. 22: 121–130.

Lu Q.-P., Ye J.-J., Huang Y.-M., Liu D., Liu L.-F., Dong K., Razumova E.A., Osterman I.A., Sergiev P.V., Dontsova O.A., Jia S.-H., Huang D.-L., Sun C.-H. 2019. Exploitation of potentially new antibiotics from mangrove actinobacteria in Maowei sea by combination of multiple discovery strategies. Antibiotics 8: 4.

Mahera S., Ahmad V., Saifullah S., Mohammad F.V., Ambreen K. 2011. Steroids and triterpenoids from grey mangrove Avicennia marina. Pakistan J. Bot. 43: 1417–1422.

Mimura T., Kura-Hotta M., Ohnishi M., Miura M., Okazaki Y., Mimura M., Maeshima M., Washitani-Nemoto S. 2003. Rapid increase of vacuolar volume in response to salt stress. Planta 216: 397–402.

Mint K.K., Nwe M.M., Lay Mar T. 2019. Study on morphological characters of some mangrove plants in South-eastern Ayeyarwady Delta of Myanmar. J. Aquacult. Mar. Biol. 8: 118–128.

Morada N., Metillo E., Uy M., Oclarit J. 2011. Anti-diabetic polysaccharide from mangrove plant, Sonneratia alba Sm. IPCBEE 13: 197–200.

Nabeel M.A., Kathiresan K., Manivannan S. 2010. Antidiabetic activity of the mangrove species Ceriops decandra in alloxan-induced diabetic rats. J. Diabetes 2: 97–103.

Nedumaran T., Thillairajasekar K., Perumal P. 2008. Mangrove associated cyanobacteria at Pichavaram, Tamilnadu. Seaweed Res. Util. 30: 77–85.

Nettel A., Dodd R.S. 2007. Drifting propagules and receding swamps: Genetic footprints of mangrove recolonization and dispersal along tropical coasts. Evolution 61: 958–971.

Palit K., Rath S., Chatterjee S., Das S. 2022. Microbial diversity and ecological interactions of microorganisms in the mangrove ecosystem: Threats, vulnerability, and adaptations. Environ. Sci. Pollut. Res. 29: 32467–32512.

Parida A.K., Jha B. 2010. Salt tolerance mechanisms in mangroves: A review. Trees 24: 199–217.

Patel I., Kracher D., Ma S., Garajova S., Haon M., Faulds C.B., Berrin J.-G., Ludwig R., Record E. 2016. Salt-responsive lytic polysaccharide monooxygenases from the mangrove fungus Pestalotiopsis sp. NCi6. Biotechnol. Biofuels 9: 108.

Patra J.K., Mishra R.R., Thatoi H. 2020. Biotechnological Utilization of Mangrove Resources. Academic Press, 512 p.

Pramanik A., Bhattacharyya M. 2024. Microbial community structure of the Sundarbans mangrove ecosystem. In: Das S., Dash H.R. (Eds.) Microbial Diversity in the Genomic Era. 2nd Ed. Academic Press, pp. 73–88.

Premanathan M., Kathiresan K., Nakashima H. 1999. Mangrove halophytes: a source of antiviral substances. South Pacific Study 19: 49–57.

Rajendra S., Karthick P., Kada N.M., CH, R., Mohanraju, R., Annamalai V. 2016. Evaluation of antimicrobial properties from the mangrove Rhizophora apiculata and Bruguiera gymnorhrhiza of Burmanallah coast, South Andaman, India. J. Coastal Life Med. 4: 475–478.

Rajivgandhi G., Chackaravarthi G., Ramachandran G., Kanisha C.C., Maruthupandy M., Quero F., Li W.-J. 2024. Production of secondary metabolites from endophytic actinomycetes isolated from marine mangrove plants. In: Egamberdieva D., Parray J.A., Davranov K. (Eds.) Plant Endophytes and Secondary Metabolites. Academic Press, pp. 133–157.

Ravikumar S., Kathiresan K., Alikhan S.L., Williams G.P., Gracelin N.A.A. 2007. Growth of Avicennia marina and Ceriops decandra seedlings inoculated with halophilic azotobacters. J. Environ. Biol. 28: 601–603.

Richards D.R., Friess D.A. 2016. Rates and drivers of mangrove deforestation in Southeast Asia, 2000–2012. Proc. Natl. Acad. Sci. USA 113: 344–349.

Rozirwan R., Muda H.I., Ulqodry T.Z. 2020. Antibacterial potential of Actinomycetes isolated from mangrove sediment in Tanjung Api-Api, South Sumatra, Indonesia. Biodiversitas J. Biol. Divers. 21: 12.

Saad S., Taher M., Susanti D., Qaralleh H., Awang A.F.I.B.T. 2012. In vitro antimicrobial activity of mangrove plant Sonneratia alba. Asian Pacific J. Tropical Biomed. 2: 427–429.

Sachithanandam V., Lalitha P., Parthiban A., Mageswaran T., Manmadhan K., Sridhar R. 2019. A review on antidiabetic properties of Indian mangrove plants with reference to island ecosystem. Evid. Based Complem. Altern. Med. 2019: 4305148.

Sadeer N.B., Zengin G., Mahomoodally M.F. 2022. Biotechnological applications of mangrove plants and their isolated compounds in medicine-a mechanistic overview. Crit. Rev. Biotechnol. 43: 393–414.

Sahoo G., Ansari Z.A., Shalkh J.B., Varik S.U., Gauns M. 2018. Epibiotic communities (microalgae and meiofauna) on the pneumatophores of Avicennia officinalis (L.). Estuar. Coastal Shelf Sci. 207: 391–401.

Say P.J., Burrows I.G., Whitton B.A. 1990. Enteromorpha as a monitor of heavy metals in estuaries. In: McLusky D.S., de Jonge V.N., & J. Pomfret J. (Eds.) North Sea—Estuaries Interactions. Springer Netherlands, Dordrecht, pp. 119–126.

Scholander P.F. 1968. How mangroves desalinate seawater. Physiol. Plant. 21: 251–261.

Selvaraj G., Kaliamurthi S., Thirugnanasambandam R. 2015. Influence of Rhizophora apiculata Blume extracts on α-glucosidase: Enzyme kinetics and molecular docking studies. Biocat. Agric. Biotechnol. 4: 653–660.

Shearer C.A., Descals E., Kohlmeyer B., Kohlmeyer J., Marvanová L., Padgett D., Porter D., Raja H.A., Schmit J.P., Thorton H.A., Voglymayr H. 2007. Fungal biodiversity in aquatic habitats. Biodiv. Conserv. 16: 49–67.

Sobrado M.A. 2005. Leaf characteristics and gas exchange of the mangrove Laguncularia racemosa as affected by salinity. Photosynthetica 43: 217–221.

Srikanth S., Lum S.K.Y., Chen Z. 2016. Mangrove root: Adaptations and ecological importance. Trees 30: 451–465.

Sudhir S., Arunprasath A., Vel, V.S. 2022. A critical review on adaptations, and biological activities of the mangroves. J. Nat. Pestic. Res. 1: 100006.

Tabao N.S., Monsalud R. 2010. Characterization and identification of high cellulase-producing bacterial strains from Philippine mangroves. Philippine J. Syst. Biol. IV: 13–20.

Thatoi H., Behera B.C., Mishra R.R., Dutta S.K. 2013. Biodiversity and biotechnological potential of microorganisms from mangrove ecosystems: A review. Ann. Microbiol. 63: 1–19.

Thatoi H., Biswal A.K. 2008. Mangroves of Orissa coast: Floral diversity and conservation status. Special Habitats and Threatened Plants of India. ENVIS Bulletin, Wildlife and Protected Areas, Vol. II, pp. 201–208.

Thatoi H., Samantaray D., Das S.K. 2016. The genus Avicennia, a pioneer group of dominant mangrove plant species with potential medicinal values: A review. Front. Life Sci. 9: 267–291.

Vaish S., Pathak B. 2023. Mangrove synthesized bio-nanomaterial and its applications: A review. Environ. Nanotechnol. Monit. Manage. 20, 100866.

Van Bogaert I.N.A., De Maeseneire S.L., Vandamme E.J. 2009. Extracellular polysaccharides produced by yeasts and yeast-like fungi. In: Satyanarayana T., Kunze G. (Eds.) Yeast Biotechnology: Diversity and Applications. Springer Netherlands Dordrecht, pp. 651–671.

Vazquez P., Holguin G., Puente M.E., Lopez-Cortes A., Bashan Y. 2000. Phosphate-solubilizing microorganisms associated with the rhizosphere of mangroves in a semiarid coastal lagoon. Biol. Fertil. Soils 30: 460–468.

Wang W.-Q., Ke L., Tam N., Wong Y.-S. 2002. Changes in the main osmotica during the development of Kandelia candel hypocotyls and after mature hypocotyls were transplanted in solutions with different salinities. Mar. Biol. 141: 1029–1034.

Xu J. 2014. Bioactive natural products derived from mangrove-associated microbes. RSC Adv. 5: 841–892.

Yabuki K., Kitaya Y., Sugi J. 1990. Studies on the function of mangrove pneumatophores (1). Environ. Contr. Biol. 28: 95–98.

Yokoya N.S., Pellizzari F.M., de Felício R., Armstrong L., Debonsi H.M., Guimarães S.M.P.B., Fujii M.T. 2023. Mangrove macroalgal communities. In: Schaeffer-Novelli Y., Abuchahla G.M.O., Cintrón-Molero G. (Eds.) Brazilian Mangroves and Salt Marshes. Springer International Publishing, Cham, pp. 131–154.

Zheng W., Wang W., Lin P. 1999. Dynamics of element contents during the development of hypocotyles and leaves of certain mangrove species. J. Exp. Mar. Biol. Ecol. 233: 247–257.

Zhou J., Yang J., Qin J., Li J., Liu X., Wei P. 2024. Nursery cultivation strategies for a widespread mangrove (Kandelia obovata Sheue & al.): evaluating the influence of salinity, growth media, and genealogy. Forests 15 574.

Downloads

Published

2024-06-20

How to Cite

Ramesh, A., Sajan, A., Namitha, L., Brijithlal, N., & Williams, G. P. (2024). Unique adaptations and bioresources of mangrove ecosystems. Environmental and Experimental Biology, 22(2), 71-78. https://doi.org/10.22364/eeb.22.07