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Introduction

Xenobiotics are toxic chemicals that are exotic to living 
organisms and have an affinity to persist in the biosphere 
(Sinha et al. 2009). These compounds have synthetic 
chemical composition, and species have not adapted to 
these in evolution (Gren 2012). The residues of xenobiotic 
substances persist in the ecosystem over a long period and 
have negative effects on the microflora and the fertility of 
the soil (Gianfreda, Rao 2008). Therefore, polluting the 
environment with recalcitrant chemicals, which often 
are xenobiotics, is one of the major environmental issues 
with global focus and recognition (Tišma et al. 2010). 
The pollution created by xenobiotics disrupts natural 
ecosystems, causes changes in climatic conditions, reduces 
water levels and has other negative impacts (Gursahani, 
Gupta 2011). The main sources of xenobiotics enter into the 
environment from pharmaceutical industries (ibuprofen, 
paracetamol), agriculture (pesticides, herbicides, 
insecticides), the paper industry (paper and pulp effluent), 
food industry (food additives such as vinegar, lecithin), 
plastic industry (polyvinyl chloride), consumer industry 
(coatings, dyes) and petroleum industries (benzene, xylene) 

(Mishra et al. 2019). Humans are exposed to xenobiotics 
through inhalation, adsorption by skin (cosmetic 
products) or ingestion (medicines, vegetables, fruits). 
They can cause severe health hazards such as heart defects, 
neurodegeneration, defects in the central nervous system 
and adverse reproductive problems. Hence, xenobiotic 
degradation in the environment is essential (Phale et al. 
2019). 

Physico-chemical approaches involved in the 
control of organic pollutants include ion exchange, 
chemical flocculation, adsorption, irradiation, oxidation, 
precipitation and ozonation (Aksu 2005). The physico-
chemical approaches are very costly and often yield adverse 
intermediate metabolites that are harmful and need further 
secondary treatment. To overcome these, several other 
environmentally friendly processes have been described, 
such as bioremediation, phytoremediation, etc. (Varsha 
et al. 2011). Bioremediation is a technology in which 
biological organisms (algae, bacteria, fungi and plants) are 
employed to minimize the accumulation and harmfulness 
of environmental contaminants (Gnanasalomi et al. 2013). 
Xenobiotic microbial depletion is an effective strategy 
for eliminating toxic pollutants from the environment. 
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The ability of microorganisms to break down xenobiotic 
substances is considered an important means of removing 
toxic materials (Sridevi et al. 2011). Some fungi are resilient 
organisms compared to bacteria and are typically less 
susceptible to high levels of pollutants. This is why fungi 
were extensively studied regarding their bioremediation 
capabilities in the mid-1980s (Ellouze, Sayadi 2016). 

Fungi play a crucial role in all environments including 
soil and marine habitats as decomposers and symbionts. 
They are especially suitable for bioremediation because 
of their robust morphological structure and various 
biochemical capabilities. Mycoremediation is a component 
of bioremediation that employs fungus for intrinsic and 
extrinsic management of polluted areas. Mycoremediation 
is a cost-effective and environmentally reliable option 
for removing, transporting and storing hazardous waste. 
Mycelia may destroy these contaminants within the soil 
before they move through food chains (Ramachandran, 
Gnanadoss 2013). Further, attention has been given to the 
distinct ability of fungi to remove these contaminants by 
using a variety of extracellular and intracellular enzyme 
systems for detoxification and bioremediation (Deshmukh 
et al. 2016). The objective of this review paper is to 
emphasize the significant properties of white-rot fungi in 
degrading different xenobiotic compounds like polymers, 
polyaromatic hydrocarbons (PAHs), polychlorinated 
biphenyls (PCBs), pentachlorophenols (PCPs), 
antibiotics, 2,4,6-trinitrotoluene (TNT), benzene, toluene, 
ethylbenzene and xylene (BTEX), pesticides and dyes.

White-rot fungi

White-rot fungi possess the remarkable ability to 
biodegrade lignin and hence the name white-rot comes 
from the white surface of timber invaded by white-
rot fungi, where the evacuation of lignin gives a faded 
impression (Pointing 2001). Systematically, white-rot fungi 
include specific basidiomycetes, and very few ascomycete 
families like Xylariaceae are associated with white-rot decay 
(Eaton, Hale 1993). The utilization of fungi for the cleaning 
of contaminated soil was initially demonstrated during 
the mid-1980s, when the white-rot fungus Phanerochaete 
chrysosporium was found to degrade a high diversity of 
natural contaminants (Bumpus, Aust 1987). This ability 
was later exhibited for diverse species such as Trametes 
versicolor and Pleurotus ostreatus (Ghani et al. 1996), 
Lentinus subnudus (Adenipekun, Fasidi 2005), Psathyrella 
candolleana LCJ 178 and Myrothecium gramineum 
LCJ 177 (Gnanasalomi, Gnanadoss 2013), Porostereum 
spadiceum (Tigini et al. 2013), Pleurotus floridanus LCJ155, 
Leucocoprinus cretaceous LCJ164, and Agaricus sp. LCJ169 
(Jebapriya, Gnanadoss 2014), Dentipellis sp. (Park et al. 
2019), Ganoderma lucidium (Coelho-Moreira et al. 2018) 
and Bjerkandera adusta (Dhiman et al. 2020). White-rot 
fungi degrade all timber components, for example, cellulose, 

hemicellulose and lignin, whereas other fungi destroy 
lignin predominantly. The former is called a non-selective 
white-rot degraders and the latter are known as specific 
white-rot degraders. The specific white-rot degraders are 
extremely intriguing from the biotechnology perspective as 
they remove lignin leaving the lucrative cellulose unaltered 
(Dashtban et al. 2010). Potential benefits of using white-rot 
fungi to remove ecological contaminants are due to their 
ubiquitous existence, ability to break down assorted classes 
of destructive foreign substances and to adjust the pH of 
their characteristic substrate (Christian et al. 2005).  

Enzyme systems in white-rot fungi

White-rot fungi usually produce one or multiple lignolytic 
enzymes in various amounts, on the basis of which they 
can be divided into four classes (Nerud,  Misurcova 
1996) namely: (a) laccase, manganese peroxidase (MnP) 
and lignin peroxidase (LiP), (b) laccase and any of the 
peroxidases, (c) laccases only, (d) peroxidases only. The 
most widely recognized lignolytic enzymes present in 
white-rot fungi incorporate laccases and MnP and the 
least common are LiP and versatile peroxidase. These 
lignolytic enzymes can work together or independently, 
yet additional enzymes like glyoxal oxidase, aryl alcohol 
oxidase, cellobiose dehydrogenase, pyranose 2-oxidase, 
and others are fundamental to accomplish the cycle of 
lignocellulose or xenobiotic degradation. In addition, an 
intracellular enzyme cytochrome P450 monooxygenase 
and low molecular weight oxidants like hydroxyl radicals 
and Mn3+ were demonstrated to be powerful in eliminating 
lignocellulosic materials and various xenobiotics. Recently, 
dye decolourising peroxidase (DyP), which is involved in 
the decolouration of dyestuffs, and aromatic peroxygenases 
has been found to be associated in catalysis of oxygen 
transfer reactions that bring about the ester cleavage, is also 
recognized as a lignolytic enzyme that corresponds with 
white-rot fungi (Rodríguez-Couto, 2016). 

Laccase
Laccase is a copper protein that has its position in blue 
oxidases. Copper, which occurs at the dynamic site of 
the enzyme, plays an integral role in catalytic reactions. 
The catalytic center of the enzyme consists of four copper 
atoms. Laccase catalyzes four single electron oxidations 
of the substrate into four electron reductive bond 
cleavages.  Degradation of various aromatic mixtures 
can be catalyzed by an associative reduction of oxygen 
to water. Moreover, in the presence of key substrates 
[2,20-azinobis-3-ethylbenzothiazoline-6-sulphonicacid 
or 1-hydroxybenzotriazole] working as electron transfer 
mediators, the substrate spectrum is further extended to 
degrade non-phenolic mixtures (Kılıç et al. 2016). Laccase 
was first recognized in 1883 by Yoshida, when he separated 
the exudates from Rhus vernicifera (Thurston 1994). 

A. Kathiravan, J.J. Gnanadoss



105

They are derived from natural sources and often occur 
in plants and microorganisms (Dwivedi et al. 2011) and 
also in a few insects (Xu 1999). Fungal sources of laccase 
have been isolated from different groups of fungi like 
deuteromycetous, ascomycetous and basidiomycetous. Of 
these, white-rot fungi and other litter degrading organisms 
are the most prominent sources of the laccase enzyme. In 
specific, laccase production by basidiomycetous taxa such as 
Trametes, Pleurotus, Agaricus, Phanerochaete, Pycnoporus, 
and Lentinus has been broadly explored as they are easy to 
grow in in vitro (Rodríguez-Couto, 2019). White-rot fungal 
species that synthesize laccase are Polyporus sanguineus, 
Phlebia brevispora, Daedalea flavida and Phlebia radiata 
(Arora, Gill 2001), Phanerochaete chrysosporium, Trametes 
hirsuta, Marasmius sp. and Trametes versicolor (Risdianto et 
al. 2012), Pleurotus florida, Pleurotus ostreatus and Pleurotus 
sajor-caju (Radhika et al. 2013), Agaricus sp. LCJ262 (Jose, 
Joel 2014), Trametes orientalis (Zheng et al. 2017), Cerrena 
unicolor strain GSM-01 (Wang et al. 2017), and Myrothecium 
gramineum LCJ 177 (Gnanasalomi, Gnanadoss 2019). 
Laccases from white-rot fungi are associated with lignin 
removal and are resilient at  different pH and temperatures.  
High purity of laccase can be obtained by suitable 
optimizing parameters (Gnanasalomi, Gnanadoss 2013). 
Laccase-mediator methods have enormous potential for 
lignin removal, biosensor application, biofuel and organic 
synthesis, bioremediation of some toxic chemical wastes, 
pharmaceutical and nanobiotechnology applications 
(Singh, Gupta 2020). 

Lignin peroxidase
LiP is a heme enzyme from the oxidoreductase family, which 
is primarily secreted by white-rot basidiomycetes during 
the formation of secondary metabolites. LiP plays a key part 
in removing the lignin portion of the plant cell wall. LiP 
assists in the biodegradation of lignin and other phenolic 
molecules with H2O2 as a substrate and veratryl alcohol 
as a mediator (Singh et al. 2019). LiP has been reported in 
various white-rot fungi like Coriolus versicolor f. antarcticus 
(Levin et al. 2004), Phanerochaete chrysosporium (Wang 
et al. 2008), Ganoderma lucidium (Sasidhara et al. 2014), 
Pleurotus ostreatus, Pleurotus sapidus, Pleurotus florida 
(Kunjadia et al. 2016), Porodaedalea pini (Tanabe et al. 
2016), Podoscypha elegans (Agarwal et al. 2017), Coriolopsis 
gallica, Pleurotus sajor-caju and Lentinula edodes (Ding et 
al. 2019). LiP is exploited for numerous industrial uses and 
bioremediation processes due to its immense substrate 
specificity and high redox potential (Erden et al. 2009).

Manganese peroxidase
As LiP, MnP is also placed under the same family of 
oxidoreductases described in Phanerochaete chrysoporium 
as another lignolytic enzyme (Paszczyńskib et al. 1985). 
MnP seems to more prevalent in white-rot fungi than 
LiP (Hammel, Cullen 2008). In contrast to LiP, MnP has 

a low redox potential and oxidizes the compounds with 
H2O2 performing as oxidant and manganese performing 
as a mediator in the MnP catalytic process. The function 
of MnP is the conversion of Mn2+ ions to Mn3+. Mn3+ is 
extremely reactive and chelates with biomolecules such as 
oxalate and malate formed by the fungus (Shanmugapriya 
et al. 2019).  Chelated Mn3+ stimulates the degradation 
of phenolic compounds to phenoxy radicals (Hofrichter 
2002). A few examples of MnP from white-rot fungi are 
Bjerkandera sp. (Mester, Field 1997), Irpex flavus, Polyporus 
sanguineus and Dichomitus squalens (Gill, Arora 2003), 
Physisporinus rivulosus (Hakala et al. 2005), Pleurotus 
ostreatus, Coriolus versicolor and Phlebia tremellosa 
(Robinson et al. 2011), Cerrena unicolor (Zhang et al. 2018) 
and Pseudolagarobasidium sp. (Thamvithayakorn et al. 
2019).  MnP finds wide applications in the industries such 
as food, textile, paper and pulp industries, pharmaceutical 
and bioremediation (Singh et al. 2019). 

Versatile peroxidase
Versatile peroxidase is a hybrid peroxidase that comprises 
the catalytic activities of MnP and LiP (Dosoretz, Reddy 
2007). Similar to MnP, it have a strong affinity for Mn2+ 
and initiates the conversion of Mn2+ to Mn3+ and it also 
metabolizes non-phenolic and phenolic molecules without 
Mn2+ like LiP. This enzyme seems to be expressed mostly in 
fungal genera such as Pleurotus, Bjerkandera, and Lepista 
and may also be present in Panus and Trametes (Yadav, 
Yadav 2015). Versatile peroxidase has distinctive characters 
compared to other lignolytic peroxidases and is suitable 
for utilization in various applications like the paper and 
pulp industry, biofuel production, ruminant nutrition, 
bioremediation, and the textile industry (Ravichandran, 
Sridhar 2016). 

Dye-decolourising peroxidase
DyP is a novel group of heme peroxidases that were 
molecularly identified and are well-known in bacteria and 
fungi. They lack structural and sequence resemblances 
with traditional flora and fauna peroxidases. As the name 
specifies, DyP can use H2O2 to detoxify different groups 
of azo and anthraquinone-based artificial dyes, substrates 
that are less susceptible to oxidation by members of 
other classical heme peroxidases. Also, specific DyP were 
described to oxidize compounds of the phenol lignin type, 
thus providing the enzymatic ability for this category 
of heme peroxidase to support the transformation of 
lignocellulosic materials for downstream production of 
biofuel (Chaplin et al. 2019). DyP was initially identified 
from Bjerkandera adusta culture (formerly reported as 
Geotrichum candidum) (Fernández-Fueyo et al. 2015).  
DyP producing white-rot fungi include Termitomyces 
albuminosus (Johjima et al. 2003), Pleurotus ostreatus 
(Faraco et al. 2007), Marasmius scorodonius (Pühse et 
al. 2009), Auricularia auricula-judae (Liers et al. 2010),  
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Exidia glandulosa, Mycena epipterygia (Liers et al. 2013), 
Irpex lacteus (Salvachúa et al. 2013), Funalia trogii (Kolwek 
et al. 2018), Trametes versicolor (Amara et al. 2018), and  
Pleurotus sapidus (Krahe et al. 2020).

Cytochrome P450 monooxygenase 
Cytochrome P450 monooxygenase is a main intracellular 
enzyme that fits the class of oxygenases that helps in the 
degradation of xenobiotics via oxygen. They also have 
heme-comprising enzymes that incorporate one or several 
oxygen molecules to break down aromatic rings and even 
stabilize the compound (Baker et al. 2019). The importance 
of cytochrome P450 monooxygenase mechanisms in 
detoxification of endogenous and exogenous molecules has 
been shown (Ichinose et al. 2013). Increased removal of 
PAHs was achieved by the initial application of cytochrome 
P450 monooxygenase in degradation experiments. 
Improved elimination of contaminants was obtained 
through molecular methods for efficient and oversupply of 
cytochrome P450 enzyme (Deshmukh et al. 2016). 

Xenobiotic degradation process by white-rot fungi

The capability of white-rot fungal species in eliminating 
xenobiotic compounds from ecosystems is dependent 
on their ability to biodegrade lignin, as it is close to the 
structure of different xenobiotics (Fig. 1). Therefore, the 
identical methodologies that provide white-rot fungi the 
potential to degrade lignin are being used to remove a large 
range of xenobiotic contaminants. Most of the xenobiotics 

are oxidized and mineralized to various sizes using white-
rot fungi under the lignolytic conditions (Field et al. 1993). 
The xenobiotic degradation process is shown in Fig. 2.

Fig. 1. Structure of lignin in comparison with the chemical 
structure of diverse xenobiotic compounds.

Fig. 2. Schematic diagram representing the degradation mechanism of xenobiotic compounds using white-rot fungi.

A. Kathiravan, J.J. Gnanadoss



107

Applications of white-rot fungi in xenobiotic 
degradation 

Degradation of polymers using white-rot fungi
Plastic is typically a polymer that is composed of various 
elements such as carbon, hydrogen, silicon, oxygen, chloride 
and nitrogen (Seymour 1989). Linking the monomers 
using chemical bonds forms plastic. Polythene contains 
about 64% of plastic, a continuous hydrocarbon polymer 
comprising elongated strands of ethylene monomers. 
The overall equation for polyethylene is CnH2n, where n, 
represents the total number of carbon molecules (Sangale et 
al. 2012). The worldwide usage of plastic is rising rapidly at 
a rate of 12% per year and approximately 0.15 billion units 
of synthetic materials are developed globally every year 
(Das, Kumar 2014). Every year, the ecosystem accumulates 
25 million metric tons of polymer waste (Kaseem et al. 
2012). 

Biodegradation of many synthetic polymers with 
different chemical compositions has been reported, but 
several of them involved degradation using white-rot 
fungi-mediated lignin enzymes (Pointing 2001). Nylon-6 
polymer degradation initially using white-rot fungus 
Bjerkandera adusta has been described (Friedrich et al. 
2007). Synthetic materials including polyvinyl chloride, 
nylon, acrylamide, etc. that are degraded by different 
white-rot fungi have been documented (Kale et al. 2015). 
Removal of biopolymers like lignin, hemicellulose and 
cellulose is also possible by white-rot fungi. In comparison 
to other groups of microorganisms, lignin removal through 
white-rot fungi is more promising (Woiciechowski et al. 
2013). Phellinus pini, Phanerochaete chrysosporium, Phlebia 
sp., Pleurotus sp., Heterobasidion annosum, Ceriporiopsis 
subvermispora, Irpex lacteus and Trametes veriscolor are 
specific white-rot fungi that preferably invade lignin more 
effectively than cellulose and hemicellulose. They secrete 
different classes of lignolytic enzymes that facilitate the 
degradation of aromatic organic compounds, producing 
aromatic radicals, and modify the structure of lignin- 
and lignocellulose-derived products (Andlar et al. 2018). 
Study on the oxidation of the biopolymer lignin from the 
paper industry was conducted to determine the capacity 
for degradation by five white-rot fungi (Lentinus edodes, 
Pleurotus ostreatus, Trametes versicolor, Phanerochaete 
chrysosporium and S22). Among these five isolates, three 
white-rot fungi (Phanerochaete chrysosporium, Pleurotus 
ostreatus and S22) showed a high level of lignin degradation 
at pH 9.0 to 11.0 (Wu et al. 2005). 

Degradation of PAHs using white-rot fungi
PAHs are organic substances that mostly lack colour or 
are pale yellow solids. They are an omnipresent class 
of many chemically related compounds that persist in 
the environment with complex structures and toxicity 
(Abdel Shafy et al. 2016). Some white-rot fungi including 

BKM-F-1767, Bjerkandera adusta CBS 595.78, Trametes 
versicolor Paprican 52, Phanerochaete chrysosporium and 
Trametes versicolor has been tested for ability to degrade 
hydrocarbons (Field et al. 1992). All white-rot fungi 
significantly degraded anthracene, as well as nine of the 
strains effectively degraded benzo(a)pyrene. Of those, 
Bjerkandera sp. Bos 55 seems to be new species and was 
deemed an effective degrader of anthracene (99.2 %) 
and benzo(a)pyrene (83.1%) molecules within 28 days 
respectively. The genus Phanerochaete and Bjerkandera 
transformed anthracene into anthraquinone, which is an 
end metabolite. Further, this analysis showed Trametes sp. 
degraded anthracene with no substantial accumulation of 
quinone (Field et al. 1992). 

The removal of PAHs by means of white-rot fungi 
is affected by  temperature, the composition of the 
medium, dissolved oxygen and soil moisture content 
(Chen et al. 2005). The biological removal of PAHs such 
as phenanthrene, fluorine and pyrene was achieved using 
thermotolerant Trametes polyzona RYNF13. This fungus 
exhibited PAH degradation at 100 mg L–1. Complete 
removal of phenanthrene was detected in mineral salt 
glucose medium at 30 °C after an incubation period of 
18 days while 52% of pyrene and 90% of fluorine could 
be removed under similar conditions. This fungus is still 
capable of surviving at a high temperature of about 42 
°C and degrades phenanthrene (68%), fluorine (48%) 
and pyrene (30%) respectively within 32 days. Thus, this 
strain has potential for PAH degradation specifically in 
the tropical area where even air temperature can be more 
than 40 °C (Teerapatsakul et al. 2016). It was shown that 
the most efficient laccase-producing white-rot fungi 
Pycnoporus sanguineus can remove phenanthrene (45.6%) 
and benz(a)anthracene (90.1%) in in vivo conditions (Li 
et al. 2018). They also transformed phenanthrene into 
2-dibenzofuranol by the cytochrome P450 monooxygenase 
enzyme or 9,10-phenanthrenedione through extracellular 
laccase and benz(a)anthracene into benz(a)anthracene-
7,12-dione through extracellular laccase. Various PAHs 
that are degraded by diverse white-rot fungi are represented 
in Table 1.

Degradation of PCBs using white-rot fungi
PCBs are widespread organic molecules that were used as 
coolant liquids in transformers and electric motors during 
the 20th century (Borja et al. 2005). Although their application 
and production were prohibited in the last decade, they 
survive in ecosystems and lead to severe consequences for 
living organisms (Colvin, Nelson 1990). Eaton (1985) was 
the first researcher to study PCBs (Aroclor® 1254 mixture) 
degradation using Phanerochaete chrysosporium. In this 
experiment, Aroclor® 1254 was mineralized into CO2 with 
the removal of water-soluble organic compounds and 
irreversible attachment to cells. The results obtained have 
been validated by the absence of gas chromatographic peaks. 

White-rot fungi mediated bioremediation for xenobiotic degradation
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PCB congener degradation by Ceriporia sp. was carried out 
by Hong et al. (2012). In this analysis, four PCB congeners 
(4,4’-dichlorobiphenyl, 2,2’,4,4’,5,5’-hexachloro-biphenyl, 
2,3’,4’,5-tetrachlorobiphenyl and 2,2’,4,5,5’-pentachloro-
biphenyl) were examined. The biodegradation rate of 
4,4’-dichlorobiphenyl on the 13th day was reported to 
be around 34.03% whereas the biodegradation rate of 
2,2’,4,4’,5,5’-hexachlorobiphenyl on the 17th day was nearly 
40.05%. This shows that extremely chlorinated biphenyls 
can be reduced by Ceriporia sp. The immobilized laccase 
obtained from Coprinus comatus on wood biochar from 
diverse species can degrade chlorinated biphenyl in 
wastewater (Li et al. 2018). Pleurotus ostreatus, Trametes 

versicolor, Phlebia brevispora, Pycnoporus cinnabarinus, and 
Pleurotus sajor-caju are few other white-rot fungi explored 
for PCBs degradation.

Degradation of PCPs using white-rot fungi
PCPs are lethal compounds that extensively occur in the 
industrial output of pesticides and wood preservatives 
(Czaplicka 2004). The usage of PCPs was forbidden 
in several countries owing to their high toxicity in the 
late 1980s but still, they are used in a few countries. The 
harmfulness of pentachlorophenol has been broadly 
reported as a recalcitrant and global pollutant in the soil 
and water (Varela et al. 2017). Degradation of PCPs is 

Table 1. Degradation of various PAHs by different white-rot fungi

PAH compounds White-rot fungi Reference
Acenapthene Phanerochaete chrysoporium Bishnoi et al. 2008
Anthracene Pleurotus ostreatus, Coriolopsis polyzona, Phanerochaete 

chrysosporium, Trametes versicolor
Vyas et al. 1994

Trametes pocas, Trametes cingulate Tekere et al. 2005
Irpex lacteus Baborová et al. 2006
Anthracophyllum discolor Acevedo et al. 2011

Chrysene Bjerkandera sp. Valentin et al. 2007
Polyporus sp. Hadibarata et al. 2009
Pleurotus ostreatus Nikiforova et al. 2010
Pleurotus sajor-caju Saiu et al. 2018

Dibenzothiophene Coriolopsis gallica Bressler et al. 2000
Bjerkandera sp. Valentin et al. 2007
Agrocybe aegerita, Coprinellus radians Aranda et al. 2009

Fluoranthene Bjerkandera sp. Valentin et al. 2007
Phanerochaete chrysosporium Bishnoi et al. 2008
Pleurotus pulmonarius Wirasnita, Hadibarata 2016

Fluorene Agrocybe sp. Chupungars et al. 2009
Pleurotus eryngii Hadibarata, Kristanti 2014
Polyporus sp. Lazim, Hadibarata 2016
Trametes sp. Zhang et al. 2016
Ganoderma sp. Torres-Farradá et al. 2019

Napthalene Phlebia lindtneri Mori et al. 2003
Trametes versicolor Bautista et al. 2010
Armillaria sp. Hadibarata et al. 2012
Pleurotus ostreatus Sukor et al. 2012
Pleurotus eryngii Hadibarata et al. 2013
Ganoderma sp. Torres-Farradá et al. 2019

Phenanthrene Trametes versicolor Han et al. 2004
Bjerkandera sp.. Terrazas-Siles et al. 2005
Phanerochaete chrysoporium Bishnoi et al. 2008
Anthracophyllum discolor Acevedo et al. 2011
Ganoderma lucidum Agarwal et al. 2018
Pycnoporus sanguineus Li et al. 2018

Pyrene Dichomitus squalens, Pleurotus sp.. Martenz, Zadrazil 1996
Phlebia brevispora Lee et al. 2016
Coriolopsis brysina Agarwal, Shahi 2017
Pleurotus sajor-caju Saju et al. 2018

Quinoloine Pleurotus ostreatus Zhang et al. 2007

A. Kathiravan, J.J. Gnanadoss



109

achieved in three ways: via oxygenolysis, hydroxylation 
or reductive dehalogenation (Field, Sierra-Alvarez 2008). 
Fungal remediation of PCPs gained interest in the last forty 
years. White-rot fungi can degrade PCPs and transform 
the respective PCPs compounds through methylation and 
dechlorination reactions. PCPs degradation under both 
lignolytic and non-lignolytic conditions using three white-
rot fungi (Trametes sp., Pleurotus sp., and Phanerochaete 
chrysosporium) were studied (Ryu et al. 2000). The activity 
of lignolytic enzymes was detected in Pleurotus and 
Trametes cultures, but not in Phanerochaete chrysosporium. 
This proves that PCP degradation can be carried out 
in two conditions (lignolytic and non-lignolytic) using 
white-rot fungi. Phlebia acanthocystis, a white-rot fungus, 
was capable of degrading 100% and 76% of PCPs (25 μM 
concentration) in low nitrogen as well as potato dextrose 
broth culture media, respectively, during incubation for 
approximately 10 days (Xiao, Kondo 2020). 

The reduction of PCPs in Phlebia acanthocystis 
culture is followed by the production of two metabolites 
(p-tetrachlorohydroquinone and pentachloroanisole) 
through oxidative metabolism. The metabolism of both 
molecules is closely linked to Phlebia acanthocystis 
extracellular enzymes. Further, the breakdown of PCPs to 
p-tetrachlorohydroquinone is carried out by cytochrome 
P450 monooxygenase (Xiao, Kondo 2020). The white-rot 
fungi with ability to degrade PCPs are Trametes versicolor 
(Walter et al. 2004), Anthracophyllum discolor (Rubilar et al. 
2007), Bjerkandera adusta, Fomes fomentarius, Ganoderma 
applantum, Pleurotus ostreatus, and Laetiporus cincinnatus 
(Ramesh, Pattar 2009) and Phlebia acanthocystis (Xiao, 
Kondo 2020).

Degradation of TNT using white-rot fungi
TNT is often utilized as an explosive by the military and 
can cause pollution to soil and water at TNT production 
and storage sites. It is mutagenic and harmful to many 
organisms in that environment. Based on animal studies, 
TNT can be a carcinogen for humans (Honeycutt et al. 
1996). Most of the white-rot fungi can convert TNT to 
dinitrotoluenes and further, result in mineralization to CO2 
(Pointing 2001). TNT degradation (50 mg L–1) was studied 
using seven white-rot species in two different media: yeast-
malt-glucose (YMG) medium and nutrient-rich YMG 
medium (Kim, Song 2000). The degradation rate was 
higher in nutrient-rich YMG medium than in the limited 
nutrient YMG medium. Hydroxylamino-dinitrotoluene 
isomers have been recognized as the first TNT metabolites 
to be detected and these compounds are converted into 
amino-dinitrotoluenes during further incubation. It was 
observed that TNT (90 mg L–1) was degraded in nutrient 
broth during 21 days by four white-rot fungal species: 
Phanerochaete chrysosporium (67%), Phanerochaete sordida 
(87%), Phlebia brevispora (90%), and Cyathus stercoreus 
(94%). The TNT degradation from culture was evaluated 
by high-performance liquid chromatography and the 

cytotoxicity of pollutants in the medium was calculated by 
Salmonella/microsome bioassay. This study showed that 
white-rot fungi can degrade and detoxify TNT compounds 
in aerobic conditions in non-lignolytic nutrient broth 
(Donnelly et al. 1997). TNT degradation was examined by 
several other white-rot fungi like Irpex lacteus (Kim, Song 
2003), Hypholoma fasciculare (Perkins et al. 2005), Trametes 
versicolor (Cheong et al. 2006), Kuehneromyces mutabilis, 
and Stropharia sp. (Serrano-González et al. 2018).

Degradation of BTEX compounds using white-rot fungi
BTEX compounds like benzene, toluene, ethylbenzene, 
and xylenes are a vital class of organic contaminants that 
are constituents of petroleum fuels and they are often 
used in various industries as industrial solvents (Smith 
1990). The first study of white-rot fungi degradation 
of BTEX compounds was reported by Yaddav, Reddy 
(1993). Waste mushroom biomass from Ganoderma 
lucidum and Pleurotus ostreatus was used as a substrate 
(10%) to decontaminate Esfahan Oil Refinery’s petroleum 
hydrocarbon contaminated soil (Mohammadi-Sichani et 
al. 2019). Petroleum hydrocarbons at the contamination 
site were oxidized by waste mushroom biomass of Pleurotus 
ostreatus (69.5%) as well as Ganoderma lucidum (57.7%) 
and also reduced the soil toxicity in 3rd month respectively. 
BTEX compound degradation using white-rot fungi has 
been less explored.

Degradation of antibiotics using white-rot fungi
Antibiotics are substances that help to treat communicable 
diseases in animals, humans, cattle and aquacultures around 
the globe. The discharge of a high proportion of vaccines 
into water sources and soil creates a potential threat to all 
microbes in these surroundings (Cycoń et al. 2019). The 
production of antibiotics is continuously increasing and 
their usage has extended from 100 000 to 200 000 tons 
worldwide (Gelband et al. 2015). Almost all antibiotics are 
not entirely processed in humans and animal bodies. A large 
number of therapeutic drugs are discharged into soil and 
water bodies by community wastewater, livestock manure, 
sludge from sewage and nitrogenous wastes that are often 
used to irrigate and enhance farmlands (Bouki et al. 2013). 
Usually, the traditional treatment process is not effective in 
treating many pharmaceutical products (Heberer 2002). 
The white-rot fungi-mediated bioremediation technique 
is therefore a simple and economical method to eliminate 
antibiotics. 

An in vitro study was conducted on use of LiP obtained 
from Phanerochaete chrysosporium for the removal of two 
drugs (carbamazepine and diclofenac) that are commonly 
found in water bodies. It showed that the LiP entirely 
removed diclofenac at pH 3.0 to 4.5 and 3 to 24 ppm H2O2. 
The efficacy of carbamazepine degradation is generally 
below 10% (Zhang, Geißen 2010). A study on ciprofloxacin 
degradation using Pleurotus ostreatus (Singh et al. 2017) 
showed that the highest degradation rate occurred at 
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a concentration of 500 ppm due to maximum enzyme 
production. The degradation rate of ciprofloxacin after 
14 days of culture at this concentration was evaluated by 
three assays: titrimetric (68.8%), indigo carmine (94.25%) 
and methyl orange (91.34%). Elimination of ciprofloxacin 
was additionally demonstrated by high-performance liquid 
chromatography, which showed 95.07% degradation and the 
microbiological experiment exhibited reduced biological 
activities of degraded products against pathogenic bacteria 
i.e. Staphylococcus aureus, Escherichia coli and Streptococcus 
pyogenes. Trametes hirsuta efficiently degraded higher 
concentrations of chloramphenicol (10 mg L–1) in the 
existence of a laccase mediator system like syringaldehyde, 
vanillin, 2,20-azinobis-3-ethylbenzothiazoline-6-sulpho-
nic acid and α-naphthol. The availability of mediators 
enhanced the degradation percentage from 10 to 100% 
during 48 h. Liquid chromatography mass spectrometry 
confirmed the chloramphenicol degradation. The produc-

tion of chloramphenicol aldehyde after the breakdown 
was non-pathogenic to microorganisms (Navada, Kulal 
2019). Magnetic cross-linked enzyme aggregates of 
Cerrena laccase have been demonstrated to be effective 
in the biodegradation of antibiotics such as tetracycline, 
oxytetracycline, ampicillin, sulfamethoxazole and erythro-
mycin (Yang et al. 2017). For example, at 40 U mL–1 Cerrena 
laccase removed tetracycline antibiotic (100 μg mL–1) at 
pH 6 and temperature at 25 °C during 48 h without redox 
mediators. Numerous studies revealed that white-rot fungi 
have the potential to degrade antibiotics (Table 2).

Degradation of pesticides using white-rot fungi
In modern-day farming, pesticide application is more 
common to increase crop produce and reduce post-harvest 
losses (Hai et al. 2012). About 5% of applied pesticides 
exterminate the specific pest organisms whereas the 
remnants pass through surface and groundwater (Nawaz et 

Table 2. Degradation of different antibiotics by various white-rot fungi

Antibiotics White-rot fungi Reference
Amoxicillin Trametes polyzona Lueangjaroenkit et al. 2019
Ampicillin Verticillium leptobactrum Kumar et al. 2013
Carbamazepine Trametes versicolor Hata et al. 2010a

Phanerochaete chrysosporium Zhang, Geißen 2010
Stropharia rugosoannulata, Gymnopilus luteofolius, Ganoderma lucidum, 
Irpex lacteus, Agrocybe erebia

Castellet-Rovira et al. 2018

Chloramphenicol Trametes hirsuta Navada, Kulal 2019
Ciprofloxacin Trametes versicolor Prieto et al. 2011

Pleurotus ostreatus Singh et al. 2017
Ganoderma lucidum Chakraborty, Abraham 2017
Pycnoporus sanguineus, Phanerochaete chrysosporium Gao et al. 2018
Xylaria longipes Rusch et al. 2018

Dichlofenac Phanerochaete sordida Hata et al. 2010b
Trametes trogii, Phanerochaete chrysosporium Aracagök et al. 2018
Pleurotus ostreatus Chapple et al. 2019

Erythromycin Trametes versicolor, Bjerkandera adusta Aydin et al. 2016
Ibuprofen Trametes versicolor, Irpex lacteus, Ganoderma lucidum, Phanerochaete 

chrysosporium
Marco-Urrea et al. 2009

Lamotrigine Pleurotus ostreatus Chefetz et al. 2019
Naproxen Trametes versicolor Borràs et al. 2011
Norfloxacin Trametes versicolor Prieto et al. 2011

Irpex lacteus, Panus tigrinus, Dichomitus squalens, Pleurotus ostreatus Čvančarová et al. 2015
Ganoderma lucidum Chakraborty, Abraham 2017

Ofloxacin Trametes hirsute Haroune et al. 2014
Trametes versicolor, Irpex lacteus, Panus tigrinus, Dichomitus squalens, 
Pleurotus ostreatus

Čvančarová et al. 2015

Sulfamethoxazole Phanerochaete chrysosporium Guo et al. 2014
Pleurotus ostreatus, Pleurotus pulmonarius, Trametes sp. de Araujo et al. 2017
Trametes versicolor Alharbi et al. 2019

Tetracycline Phanerochaete chrysosporium Wen et al. 2009
Trametes versicolor Suda et al. 2012
Cerrena sp. Yang et al. 2017
Pycnoporus sp. Tian et al. 2020
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al. 2011). The existence of agropesticides in the biosphere 
has becomes a threat to flora, fauna, microbes and humans 
(Hussain et al. 2015). The removal of lindane pesticides was 
accomplished by Cyathus bulleri and Phanerochaete sordida. 
Among these two species, Cyathus bulleri degraded more 
effectively than Phanerochaete sordida. During the time 
of degradation, two degradable intermediate metabolites 
(tetrachlorocyclohexene and tetrachlorocyclohexanol) 
were observed in Phanerochaete sordida culture. 
Tetrachlorocyclohexanol was the first detected degradation 
product in Cyathus bulleri culture (Singh, Kuhad 2000). 
Bending et al. (2002) studied the degradation potential 
of nine white-rot fungi against monoaromatic pesticides 
like diuron, metalaxyl, atrazine or terbuthylazine in liquid 
culture. The highest level of pesticide degradation was 
reported in Hypholoma fasciculare, Stereum hirsutum and 
Coriolus versicolor. The rate of degradation of terbuthylazine, 
diuron and atrazine was 86% while for metalaxyl the 
degradation rate was below 44%. The capability of three 
Phlebia species to degrade dieldrin and aldrin was also 
examined (Xiao et al. 2011). After 42 days of treatment, 
the three Phlebia sp. could degrade approximately 50% of 
dieldrin in a low nitrogen medium. Three oxidized products 
were identified as dieldrin metabolites in Phlebia species; 
oxidation reactions might play an effective role in removing 
dieldrin. Further, aldrin showed high degradation activity 
and after 28 days of culture, 90% of aldrin was degraded. 
Transformed metabolites (two carboxylic acid products 

and 9-hydroxyaldrin) were identified in the fungal cultures. 
This showed that the methyl group of pesticides such as 
aldrin and dieldrin might be susceptible to oxidative attack 
by white-rot fungi. Clothianidin pesticide degradation 
was tested using Phanerochaete sordida in nitrogen-
limited broth. Approximately 37% of clothianidin was 
degraded at 30 °C after an incubation period of 20 days. 
N-(2-chlorothiazol-5-yl-methyl)-N’-methylurea was the 
transformed metabolite during clothianidin degradation, 
identified by analyzing the supernatant culture with high-
resolution electrospray ionisation mass spectrometry 
and nuclear magnetic resonance (Mori et al. 2017). Some 
common pesticides that are degraded by various white-rot 
fungi are shown in Table 3. 

Degradation of dyes using white-rot fungi
Artificial dyes are broadly exploited in various industries 
like food, cosmetics, pharmaceutical, textiles and leather, 
etc. (Couto 2009). From 1856, over 105 different dyes 
have been produced globally with a yearly production 
of about 7 × 105 metric tons (Chen et al. 2003). Globally, 
approximately 28 000 tons of textile dyestuffs are released 
into textile industrial effluent each year (Jin et al. 2007). 
Unprocessed dye effluents in water bodies cause severe 
environmental and health threats (Shedbalkar et al. 2008). 
Developing a cost-effective biological method to remove 
synthetic colours is essential. 

White-rot fungi are a class of fungi that synthesize 

Table 3. Degradation of different pesticides by various white-rot fungi 

Pesticide White-rot fungi Reference
Atrazine Pleurotus pulmonarius Masaphy et al. 1996

Anthracophyllum discolor Elgueta et al. 2016
Carbofuran Phlebia sp., Irpex lacteus Li et al. 2020
Chlorpyrifos Phlebia sp., Lenzites betulinus, Irpex lacteus Wang et al. 2020
Clothianidin Phanerochaete sordida Mori et al. 2017
Dichlorophen Bjerkandera adusta Davila-Vazquez et al. 2005
Dichlorophenoyacetcid Lentinula edodes Tsujiyama et al. 2013

Lentinus crinitus Serbent et al. 2020
Diuron Agrocybe semiorbicularis, Auricularia auricola, Flammulina 

velupites, Dichotomitus squalens, Coriolus veriscolor, Hypholoma 
fasciculare, Phanerochaete velutina, Pleurotus ostreatus, Stereum 
hirsutum

Bending et al. 2002

Ceriporia lacerata, Phanerochaete chrysosporium, 
Phanerochaete sordida, Trametes versicolor

Mori et al. 2018

Endrin Phlebia acanthocystis, Phlebia brevispora Xiao, Kondo 2019
Fipronil Trametes versicolor Wolfand et al. 2016
Lindane Cyathus bulleri, Phanerochaete sordida Singh, Kuhad 2000

Ganoderma australe Dritsa et al. 2005
Pleurotus ostreatus Papadopoulou et al. 2006
Ganoderma lucidum Kaur et al. 2016

Parathion Bjerkandera adusta, Pleurotus ostreatus, Phanerochaete 
chrysosporium

Jauregui et al. 2003

1,1’-(2,2,2-Trichloroethane-1,1-
diyl)bis(4-chlorobenzene) (DDT)

Phlebia lindineri, Phlebia brevispora Xiao et al. 2011
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enzymes able to decompose dyes in aerobic conditions 
(Nozaki et al. 2008). They produce several oxidoreductases 
that can biodegrade lignin and their associated aromatic 
compounds. The capacity for dye degradation differs for 
fungal species and enzymes (Nyanhongo et al. 2002). Four 
different mechanisms are involved in the decolouration of 
dye using white-rot fungi: biodegradation, biosorption, 
bioreactor and immobilized lignin modified enzymes 
(Jebapriya, Gnanadoss 2013). The biosorption mechanism 
involves the adsorption of dyes by fungal biomass. However, 
dye removal by adsorption was found to be restricted to 
50% (Knapp et al. 2001). Biodegradation has a key role in 
dye decolourization, as it secretes extracellular lignolytic 
enzymes to oxidize the dyes (Jayasinghe et al. 2008). 
Laccase producing white-rot fungi Pleurotus floridanus 
LCJ155, Leucocoprinus cretaceous LCJ164, and Agaricus sp. 
LCJ169 were effective in degrading synthetic dyes such as 
bromophenol blue, methyl red, phenol red, Congo red and 
brilliant green (Jebapriya, Gnanadoss 2014). Bjerkandera 
adusta cultured in potato dextrose broth medium in an 
airlift bioreactor. After 10- to 15-h treatment, there was 90% 
of dye decolourization for both acid and reactive colourants. 
These results suggested that a bioreactor employed with a 
white-rot fungal strain is promising for dye effluent removal 
(Sodaneath et al. 2017). The decolourization of erichrome 
black T and Congo red dyes by Pleurotus ostreatus was 
studied (Gnanadoss et al. 2013). The highest degradation 
rate of dyes was observed when Pleurotus ostreatus culture 
was immobilized on polyurethane foam. 

The LiP enzyme obtained from Ganoderma lucidum 
(GRM117) and Pleurotus ostreatus (PLO9) immobilized 
on carbon nanotubes is a promising biocatalyst for dye 
removal (Oliveira et al. 2018). Biosorption of remazol 
brilliant blue R and indigo carmine dyes was studied using 
immobilized biomass of white-rot fungus Psathyrella 
candolleana LCJ178. Polyurethane foam, stainless steel 
sponge, luffa sponge, scotch brite and white nylon sponge 
were used as supporting materials for immobilization 
of Psathyrella candolleana LCJ178 biomass. Of these, 
stainless steel sponge was found effective in binding to 
the culture without causing any operational difficulties. 
This study revealed that the selection of suitable support 
material, culture condition (shaking) and other physical 
aspects were critical for enhancing the process of dye 
removal (Gnanasalomi et al. 2016). Several reviews on 
the dye removal by means of white-rot fungi have already 
been published (Shah, Nerud 2002; Wesenberg et al. 2003; 
Asgher et al. 2008; Tišma et al. 2010; Jebapriya, Gnanadoss 
2013; Sen et al. 2016; Chaturvedi et al. 2019; Periasamy et 
al. 2019).

Conclusions

Xenobiotic compounds are anthropogenic substances 
generated from multiple industries that have negative 

environmental consequences if they are released without 
proper pretreatment. Xenobiotics are noxious to living 
organisms; therefore they need to be removed quickly 
before entering into the environment. However, the 
physical and chemical methodologies are not feasible 
enough to degrade xenobiotic compounds. Subsequently, 
an alternative remediation technology is needed to combat 
xenobiotic compounds. Bioremediation technology is 
more promising in xenobiotic degradation owing to its 
cost-effective and eco-friendly approach. 

White-rot fungi are thought to be efficient bio-degraders 
of organic pollutants probably owing to their metabolic 
enzymes with extensive substrate specificities. Different 
white-rot fungi have different biodegradation abilities for 
different xenobiotic compounds primarily due to their 
unique morphology, culture and environmental aspects as 
well as the nature of the enzymes produced. The characteristic 
features of lignolytic enzymes differ between taxa of white-
rot fungi. They are well explored in the biodegradation of 
diverse xenobiotics like dyes, hydrocarbons, and phenolic 
compounds on a laboratory scale. Still, many studies are 
required to explore the scope of white-rot fungi at the 
industrial level. Additionally, screening of new white-rot 
fungal isolates often with promising enzyme activity is 
required for the bioremediation of new toxic chemicals due 
to increased industrial contamination. White-rot fungi in 
combination with biotechnological tools such as genetic 
engineering can produce novel strains with ideal properties 
for the disintegration of numerous xenobiotic pollutants. 
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